Mostrando 1 - 3 Resultados de 3 Para Buscar 'Tamara Albino, Jimmy Rainer', tiempo de consulta: 0.01s Limitar resultados
1
tesis de maestría
El objetivo principal de la presente tesis es presentar la teoría de las familias normales y mostrar su importancia en la teoría de grupos discontinuos y discretos. Primero haremos un estudio de las propiedades de las transformaciones de Moebius y luego su clasificación por conjugación. Para así introducirnos en la teoría de familias normales para funciones holomorfas y meromorfas. A partir de ello probaremos algunos resultados de normalidad para transformaciones de Moebius en especial el teorema fundamental de normalidad para transformaciones de Moebius. Finalmente veremos que un grupo Γ de transformaciones de Moebius es discontinuo en un punto α si y solo si Γ es discreto y forma una familia normal en α.
2
tesis de maestría
El objetivo principal de la presente tesis es presentar la teoría de las familias normales y mostrar su importancia en la teoría de grupos discontinuos y discretos. Primero haremos un estudio de las propiedades de las transformaciones de Moebius y luego su clasificación por conjugación. Para así introducirnos en la teoría de familias normales para funciones holomorfas y meromorfas. A partir de ello probaremos algunos resultados de normalidad para transformaciones de Moebius en especial el teorema fundamental de normalidad para transformaciones de Moebius. Finalmente veremos que un grupo Γ de transformaciones de Moebius es discontinuo en un punto α si y solo si Γ es discreto y forma una familia normal en α.
3
tesis doctoral
El objetivo de esta tesis es determinar fórmulas efectivas de residuos (o índices) de singularidades de foliaciones holomorfas de codimensión uno en espacios complejos de dimensiones mayores que tres, con el principal objetivo de aplicar estas fórmulas al estudio de singularidades de variedades invariantes (complejas) por foliaciones holomorfas en espacio complejos. Primero, usando un lema de Saito [33], presentaremos una definición del índice variacional de Khanedani-Suwa para foliaciones holomorfas de codimensión uno en variedades complejas. Este índice es una natural generalización del índice variacional para foliaciones holomorfas en superficies complejas [23] Este índice variacional se relaciona con el índice GSV, recientemente definido por MCorrea - OMachado [15] para sistema Pffaf holomorfo. Luego, cuando consideremos singularidades casi-Liouvilleanas de foliaciones ho...