1
artículo
Publicado 2015
Enlace

One of the most interesting observations made by the Communication/Navigation Outage Forecasting System (C/NOFS) satellite mission was the detection of average equatorial ionospheric vertical drifts that largely differed from model predictions. C/NOFS measurements showed, in particular, downward drifts in the afternoon sector, and upward drifts around local midnight hours during the 2008 and 2009 extreme solar minimum. The unexpected behavior of the drifts has important implications for ionospheric modeling and suggests the necessity for a better understanding of the low‐latitude electrodynamics. We used ground‐based radar measurements to quantify the seasonal and solar flux variability of daytime equatorial drifts at lower altitudes (∼150 km) than those probed by C/NOFS (above ∼400 km). We found that average vertical drifts at 150 km altitude are in good agreement with model pre...
2
artículo
Publicado 2017
Enlace

Multibeam observations of the 150 km echoes made using the Equatorial Atmosphere Radar (EAR), located at Kototabang, Indonesia, provide unique opportunity to study both vertical and zonal E × B plasma drifts in the equatorial ionosphere. In this paper, we focus on estimating daytime zonal drifts at the 150 km (140–160 km) and E (100–110 km) regions using multibeam observations of 150 km and E region echoes made using the EAR and study the daytime zonal drifts covering all seasons not studied before from Kototabang. Zonal drifts in the 150 km and E regions are found to be westward and mostly below −80 m s−1 and −60 m s−1, respectively. While the zonal drifts in the 150 km and E regions do not go hand in hand on a case‐by‐case basis, the seasonal mean drifts in the two height regions are found to be in good agreement with each other. Zonal drifts at the 150 km region show ...
3
artículo
Publicado 2014
Enlace

While the formation of equatorial electrojet (EEJ) and its temporal variation is believed to be fairly well understood, the longitudinal variability at all local times is still unknown. This paper presents a case and statistical study of the longitudinal variability of dayside EEJ for all local times using ground-based observations. We found EEJ is stronger in the west American sector and decreases from west to east longitudinal sectors. We also confirm the presence of significant longitudinal difference in the dusk sector pre-reversal drift, using the ion velocity meter (IVM) instrument onboard the C/NOFS satellite, with stronger pre-reversal drift in the west American sector compared to the African sector. Previous satellite observations have shown that the African sector is home to stronger and year-round ionospheric bubbles/irregularities compared to the American and Asian sectors. T...