Mostrando 1 - 3 Resultados de 3 Para Buscar 'Shume, E. B', tiempo de consulta: 0.02s Limitar resultados
1
artículo
Previous studies showed that conventional coherent backscatter radar measurements of the Doppler velocity of the so-called 150 km echoes can provide an alternative way of estimating ionospheric vertical plasma drifts during daytime hours (Kudeki and Fawcett, 1993; Chau and Woodman, 2004). Using observations made by a small, lowpower 30 MHz coherent backscatter radar located in the equatorial site of São Luís (2.59◦ S, 44.21◦ W; −2.35◦ dip lat), we were able to detect and monitor the occurrence of 150 km echoes in the Brazilian sector. Using these measurements we estimated the local time variation of daytime vertical ionospheric drifts in the eastern American sector. Here, we present a few interesting cases of 150 km-echoes observations made by the São Luís radar and estimates of the diurnal variation of vertical drifts. These cases exemplify the variability of the vertical dr...
2
artículo
Recent observations of the low‐latitude ionospheric electron density revealed a four‐peaked longitudinal structure in the equatorial ionization anomaly when plotted at a constant‐local‐time frame. It was proposed that neutral wind‐driven E region dynamo electric fields due to nonmigrating tidal modes are responsible for this pattern. We examine the four‐peaked structure in the observed topside ion density and its manifestation as longitudinal structures in total electron content (TEC) over South America. The strong longitudinal variation in TEC characterized by larger value over Brazilian eastern longitude sector as compared to that over the Peruvian western longitude is modeled using the Sheffield University plasmasphere‐ionosphere model (SUPIM) aiming to identify the control factors responsible for the longitude variation. We found that the SUPIM runs using as input the e...
3
artículo
Daytime equatorial electrojet plasma irregularities were investigated using five distinct radar diagnostics at Jicamarca including range-time-intensity (RTI) mapping, Faraday rotation, radar imaging, oblique scattering, and multiple-frequency scattering using the new AMISR prototype UHF radar. Data suggest the existence of plasma density striations separated by 3–5 km and propagating slowly downward. The striations may be caused by neutral atmospheric turbulence, and a possible scenario for their formation is discussed. The Doppler shifts of type 1 echoes observed at VHF and UHF frequencies are compared and interpreted in light of a model of Farley Buneman waves based on kinetic ions and fluid electrons with thermal effects included. Finally, the up-down and east-west asymmetries evident in the radar observations are described and quantified.