1
tesis de grado
Publicado 2022
Enlace
Enlace
Evalua la precisión del uso del deep learning en la síntesis, detección y segmentación de signos ultrasonográficos de pulmón sugerentes a COVID-19. Para esta investigación se utilizaron dos modelos de deep learning: el DCGAN para la síntesis de imágenes y el Detectron2 (Mask R-CNN) con pesos pre entrenados de RESNET50 para detección y segmentación. Se utilizó el conjunto de datos de acceso libre POCUS, del cual se seleccionaron 1892 frames de ultrasonografía pulmonar de pacientes con COVID-19, 1570 (83%) para el entrenamiento y 323 (17%) para validación. Para le detección y segmentación se hizo una división por categorías utilizando los signos de líneas B, signos de línea pleural anormal y consolidación, los cuales están relacionados con la gravedad de la enfermedad. Para evaluar el rendimiento de ambos modelos se utilizaron las métricas de función de pérdida, ex...