Mostrando 1 - 2 Resultados de 2 Para Buscar 'Reivan Ortiz, G.G.', tiempo de consulta: 0.28s Limitar resultados
1
artículo
This work was carried out by the importance of providing insights into the nano-based drug delivery of anticancers. To this aim, a representative model of aluminum nitride (AN) nanocage scaffold and two of its boron and gallium doped forms (BAN and GAN) were investigated towards the adsorption of thiotepa (Tep) anticancer. Density functional theory (DFT) calculations were performed to evaluate the stabilized structures and their corresponding electronic features. The results indicated the contribution of N-head and S-head of Tep to interactions with each scaffold resulting six complexes; NTep@AN and STep@AN, NTep@BAN and STep@BAN, NTep@GAN and STep@GAN. In each complex model, the characteristic features were obtained based on the interactions details and frontier molecular orbitals related features. In this regard, the investigated scaffolds were found suitable for adsorbing the Tep subs...
2
artículo
Sensing drug substances by nanostructures are very important in accordance with the management of targeted drug delivery processes and drug substances detections. Boron nitride (BN), aluminum nitride (AlN), and gallium nitride (GaN) decorated carbon cage (BN-C, AlN-C, and GaN-C) scaffolds were assessed towards sensing the thiamazole (TMZ) drug through the wB97XD/6–31 + G* level of density functional theory (DFT) computations. The singular models were optimized and their combinations to each other were stabilized to obtain the interacting TMZ@Scaffold bimolecular complexes and their corresponding features. The results indicated the existence of non-covalent physical interactions between the substances and their electronic features indicated possibility of sensing function for the investigated scaffolds. Based on the variations of values of adsorption energy and energy gap, the features ...