1
tesis de grado
Publicado 2024
Enlace

Este trabajo presenta un enfoque de reentrenamiento automático de un modelo de predicción de índice de infección por COVID 19 en el Perú con el objetivo de tener una herramienta de planificación protocolar y estratégica para contrarrestar esta infección y que tenga una precisión que perdure a lo largo del tiempo. Para el desarrollo del modelo se utilizó una red neuronal recurrente Long short-term memory (LSTM) y una fuente de datos constantemente actualizada, fundamental para la aplicación del reentramiento. Los modelos producidos por este enfoque flujo automatizado durante dos meses de reentrenamiento semanal cuentan con un coeficiente de determinación y raíz del error cuadrático medio en promedio de 0.994 y 260.944 respectivamente. Comparado con otros trabajos, los modelos producidos tienen la ventaja de ser entrenados semanalmente con datos actualizados, manteniendo una ...