1
artículo
Publicado 2006
Enlace
Enlace
Diabetes mellitus is a serious chronic metabolic disordercharacterized by an increased plasma glucose concentrationand vascular and neurologic complications as well. Diabetesmellitus results from relative or absolute deficiency of insulinsecretion or insulin deficient action. Although there are anumber of oral antidiabetic agents besides insulin or insulinanalogues, none of them is optimal.Vanadium can mimic insulin effects in vitro and in vivoand the possibility of using vanadium compounds asantidiabetic agents is under study. This review will summarizethe insulin mimetic action of vanadium and its possiblemechanisms in comparison with insulin.
2
artículo
Publicado 2006
Enlace
Enlace
Diabetes mellitus is a serious chronic metabolic disordercharacterized by an increased plasma glucose concentrationand vascular and neurologic complications as well. Diabetesmellitus results from relative or absolute deficiency of insulinsecretion or insulin deficient action. Although there are anumber of oral antidiabetic agents besides insulin or insulinanalogues, none of them is optimal.Vanadium can mimic insulin effects in vitro and in vivoand the possibility of using vanadium compounds asantidiabetic agents is under study. This review will summarizethe insulin mimetic action of vanadium and its possiblemechanisms in comparison with insulin.
3
artículo
Publicado 2006
Enlace
Enlace
Diabetes mellitus is a serious chronic metabolic disordercharacterized by an increased plasma glucose concentrationand vascular and neurologic complications as well. Diabetesmellitus results from relative or absolute deficiency of insulinsecretion or insulin deficient action. Although there are anumber of oral antidiabetic agents besides insulin or insulinanalogues, none of them is optimal.Vanadium can mimic insulin effects in vitro and in vivoand the possibility of using vanadium compounds asantidiabetic agents is under study. This review will summarizethe insulin mimetic action of vanadium and its possiblemechanisms in comparison with insulin.
4
artículo
Design of Vanadium Antidiabetic Agents: Development and Recent AdvancesThe discovery of the enhanced hypoglycemic activity of bis(maltolate)oxovanadiu m (IV) (BMOV) compared to simplevanadium salts stimulated the design, synthesis and both in vitro and in vivo evaluation of a large variety of oxovanadium (IV)complexes with different organic ligands for their potential use as antidiabetic drugs that may be able to substitute, either partially or totally, the daily insulin injections used in the treatment of type 1 diabetes mellitus or the orally available hypoglycemic drugs usually used in combined therapy for type 2 diabetes.Recently, a close BMOV analogue, an ethyl substitute, has already successfully completed the phase 1 clinical trial in humans. The design of new types of complexes and the development of alternative delivery methods represent an active research field today.
5
artículo
Design of Vanadium Antidiabetic Agents: Development and Recent AdvancesThe discovery of the enhanced hypoglycemic activity of bis(maltolate)oxovanadiu m (IV) (BMOV) compared to simplevanadium salts stimulated the design, synthesis and both in vitro and in vivo evaluation of a large variety of oxovanadium (IV)complexes with different organic ligands for their potential use as antidiabetic drugs that may be able to substitute, either partially or totally, the daily insulin injections used in the treatment of type 1 diabetes mellitus or the orally available hypoglycemic drugs usually used in combined therapy for type 2 diabetes.Recently, a close BMOV analogue, an ethyl substitute, has already successfully completed the phase 1 clinical trial in humans. The design of new types of complexes and the development of alternative delivery methods represent an active research field today.
6
artículo
Design of Vanadium Antidiabetic Agents: Development and Recent AdvancesThe discovery of the enhanced hypoglycemic activity of bis(maltolate)oxovanadiu m (IV) (BMOV) compared to simplevanadium salts stimulated the design, synthesis and both in vitro and in vivo evaluation of a large variety of oxovanadium (IV)complexes with different organic ligands for their potential use as antidiabetic drugs that may be able to substitute, either partially or totally, the daily insulin injections used in the treatment of type 1 diabetes mellitus or the orally available hypoglycemic drugs usually used in combined therapy for type 2 diabetes.Recently, a close BMOV analogue, an ethyl substitute, has already successfully completed the phase 1 clinical trial in humans. The design of new types of complexes and the development of alternative delivery methods represent an active research field today.