Mostrando 1 - 5 Resultados de 5 Para Buscar 'Neciosup Puican, Hernán', tiempo de consulta: 0.01s Limitar resultados
1
artículo
In this article, we study the role of the fundamental group of the complement of an affine plane curve in the analytic classification of singular codimension-one foliations in (C3, 0). We focus on obtaining an adequate representation of the fundamental group of a particular affine plane curve complement, using braid monodromy and the Zariski-Van Kampen method. The image of this group, under the holonomy representation of the foliation, is known as the holonomy group of the foliation and the analytic conjugacy of these groups is equivalent to the analytic classification of almost homogeneous cuspidal singular holomorphic foliations of admissible type on (C3, 0) [6].
2
tesis doctoral
Sin duda, uno de los problemas ubicuos de las matemáticas es el de la clasificación de objetos, una vez definido un criterio de equivalencia. Así pues, se clasifican estructuras algebraicas, objetos geométricos, o ecuaciones, siguiendo criterios de isomorfismo, conservación de ciertas estructuras geométricas, o relación entre los espacios de soluciones. Uno de los objetivos de estudiar estas clasificaciones es hallar un representante “sencillo” a cada una de las clases de equivalencia, cuyas propiedades, fáciles de estudiar, permiten deducir por analogía propiedades de los objetos más generales. Mencionamos algunos ejemplos conocidos. 1. Toda matriz cuadrada es equivalente a una matriz en forma de Jordan. Así deducimos por ejemplo, la descomposición de un endomorfismo en su parte semisimple y nilpotente. 2. Todo grupo abeliano finito es isomorfo a una suma directa de grup...
3
tesis doctoral
Sin duda, uno de los problemas ubicuos de las matemáticas es el de la clasificación de objetos, una vez definido un criterio de equivalencia. Así pues, se clasifican estructuras algebraicas, objetos geométricos, o ecuaciones, siguiendo criterios de isomorfismo, conservación de ciertas estructuras geométricas, o relación entre los espacios de soluciones. Uno de los objetivos de estudiar estas clasificaciones es hallar un representante “sencillo” a cada una de las clases de equivalencia, cuyas propiedades, fáciles de estudiar, permiten deducir por analogía propiedades de los objetos más generales. Mencionamos algunos ejemplos conocidos. 1. Toda matriz cuadrada es equivalente a una matriz en forma de Jordan. Así deducimos por ejemplo, la descomposición de un endomorfismo en su parte semisimple y nilpotente. 2. Todo grupo abeliano finito es isomorfo a una suma directa de grup...
4
artículo
El teorema de Brauer describe un procedimiento para modificar un autovalor del espectro de una matriz compleja y Rado lo extiende para modificar una parte del espectro.En los años cincuenta Perfect utiliza estos resultados para dar condiciones bajo la cual una colección de números reales sea el espectro de una matriz no negativa [6], [7]. Untrabajo debido a Suleimanova [12], junto con estas condiciones, dan origen al problema espectral inverso no negativo. Recientemente se han descrito varias condiciones suficientes basadas en los teoremas de Brauer y Rado para la realizacion de matrices no negativas con espectro real. En este trabajo profundizamos estas técnicas y se hace una recopilación de los resultados conocidos hasta el momento para el problema del espectro real inverso no negativo que utilizan el teorema de Brauer.
5
artículo
The main aim of this paper is proof that the reduction of the singularities of a generalized hypersurfaces agrees with a reduction of singularities of its separatrix; which is a generalization of the result presented in [8] by the first two authors.