Mostrando 1 - 2 Resultados de 2 Para Buscar 'Muhari A.', tiempo de consulta: 0.01s Limitar resultados
1
artículo
Change detection between images is a procedure used in many applications of remote sensing data. Among these applications, the identification of damaged infrastructures in urban areas due to a large-scale disaster is a task that is crucial for distributing relief, quantifying losses, and rescue purposes. A crucial consideration for change detection is that the images must be co-registered precisely to avoid errors resulting from misalignments. An essential consideration is that some large-magnitude earthquakes produce very complex distortions of the ground surface; therefore, a pair of images recorded before and after a particular earthquake cannot be co-registered accurately. In this study, we intend to identify changes between images that are not co-registered. The proposed procedure is based on the use of phase correlation, which shows different patterns in changed and non-changed are...
2
artículo
We developed tsunami fragility functions using three sources of damage data from the 2018 Sulawesi tsunami at Palu Bay in Indonesia obtained from (i) field survey data (FS), (ii) a visual interpretation of optical satellite images (VI), and (iii) a machine learning and remote sensing approach utilized on multisensor and multitemporal satellite images (MLRS). Tsunami fragility functions are cumulative distribution functions that express the probability of a structure reaching or exceeding a particular damage state in response to a specific tsunami intensity measure, in this case obtained from the interpolation of multiple surveyed points of tsunami flow depth. We observed that the FS approach led to a more consistent function than that of the VI and MLRS methods. In particular, an initial damage probability observed at zero inundation depth in the latter two methods revealed the effects o...