Mostrando 1 - 3 Resultados de 3 Para Buscar 'Medrano, LR', tiempo de consulta: 0.01s Limitar resultados
1
artículo
It study, employing a tight-binding Hamiltonian, the influence of chemical disorder on the electronic level spacing distribution of a silver nanoparticle containing 5083 atoms. The results indicate that in the absence of disorder the level spacing distributions are similar to those expected for systems belonging to the Gaussian Orthogonal Ensemble. Whereas, after increasing the chemical disorder, the electronic level spacing distribution and the statistics tend to the corresponding form for the Poisson Ensemble, i.e., the silver nanoparticle acquires an insulating character which is expected for strongly disordered systems. Hence, this kind of disorder produces the localization of the electronic states of the nanoparticle.
2
artículo
An alternative method to determine the critical cooling rate of materials has been developed by explaining the size and cooling rate dependences of physical properties of metallic nanoparticles through the scaling theory. This method has been applied to silver and copper nanoparticles which have been obtained by molecular dynamics simulations. The results reveal that our values for critical rate are close for each studied physical quantity. Thus, by taking the average among them, we obtain 6.2(8) × 1012 K/s for silver and 8.9(5) × 1012 K/s for copper. We have also found the threshold size of nanoparticle behavior is independent of the cooling rate.
3
artículo
In the present work we determine the threshold of the nanoparticle behavior of copper nanoparticles by studying their structural and electronic properties. The studied nanoparticles contain from 13 to 8217 atoms and were obtained by molecular dynamics simulations using the Johnson potential for copper based on the embedded atom method. The results indicate that for small copper nanoparticles (o1000 atoms, 2.8 nm) the surface plays an important role in their physical properties. Whereas, for large nanoparticles (42000 atoms, 3.5 nm), with spherical-like external shape and large percentage of fcc-like local structure, this effect is negligible and their electronic character are similar to such expected in solid copper. Finally, it has also been shown that copper nanoparticles change their electronic character, from metallic to insulating, after increasing the strength of the chemical disor...