1
tesis de maestría
Publicado 2015
Enlace
Enlace
El tema de la presente tesis es el estudio de la ecuación x n − 1 = 0 en los números p-ádicos. Para ello la primera tarea es factorizar f(x) = x n − 1 a como de lugar en producto de irreducibles. Llegado a esa instancia, la idea es conseguir una extensión que nos permita descomponer completamente el polinomio f(x) y mostrar el comportamiento algebraico de las raíces. En los p-ádicos, ello se logra una vez introducidos los conceptos de índice de ramificación y grado de clases residuales. Empezamos esta tesis con un repaso de las extensiones ciclotómicas sobre Q en el Capítulo 1. Estas resultan de adjuntar una raíz primitiva de la unidad a ´ Q, generando así una extensión que resulta ser de Galois. Además, dado que los enteros p-ádicos también poseen una buena reducción módulo el primo p de preferencia, es preciso recordar algunas propiedades de los cuerpos finitos. ...
2
tesis de maestría
Publicado 2015
Enlace
Enlace
El tema de la presente tesis es el estudio de la ecuación x n − 1 = 0 en los números p-ádicos. Para ello la primera tarea es factorizar f(x) = x n − 1 a como de lugar en producto de irreducibles. Llegado a esa instancia, la idea es conseguir una extensión que nos permita descomponer completamente el polinomio f(x) y mostrar el comportamiento algebraico de las raíces. En los p-ádicos, ello se logra una vez introducidos los conceptos de índice de ramificación y grado de clases residuales. Empezamos esta tesis con un repaso de las extensiones ciclotómicas sobre Q en el Capítulo 1. Estas resultan de adjuntar una raíz primitiva de la unidad a ´ Q, generando así una extensión que resulta ser de Galois. Además, dado que los enteros p-ádicos también poseen una buena reducción módulo el primo p de preferencia, es preciso recordar algunas propiedades de los cuerpos finitos. ...
3
artículo
The étale fundamental group is a central tool in algebraic geometry that generalizes the topological fundamental group to the context of schemes. In this article, we explore its behavior for normal schemes, highlighting its relationship to arithmetic and geometric invariants.