1
artículo
Publicado 2015
Enlace
Enlace
A new, 14-panel Advanced Modular Incoherent Scatter Radar (AMISR-14) system was recently deployed at the Jicamarca Radio Observatory. We present results of the first coherent backscatter radar observations of equatorial spread F (ESF) irregularities made with the system. Colocation with the 50 MHz Jicamarca Unattended Long-term studies of the Ionosphere and Atmosphere (JULIA) radar allowed unique simultaneous observations of meter and submeter irregularities. Observations from both systems produced similar Range-Time-Intensity maps during bottom-type and bottomside ESF events. We were also able to use the electronic beam steering capability of AMISR-14 to “image” scattering structures in the magnetic equatorial plane and track their appearance, evolution, and decay with a much larger field of view than previously possible at Jicamarca. The results suggest zonal variations in the inst...
2
artículo
During geomagnetically quiet and solar minimum conditions, spatial variations of the early morning thermosphere‐ionosphere (TI) system are expected to be mainly governed by wave dynamics. To study the postmidnight dynamical coupling, we investigated the early morning equatorial ionization anomaly (EIA) using Global‐scale Observations of the Limb and Disk (GOLD) measurements of OI‐135.6 nm nightglow emission and global navigation satellite system (GNSS)‐based total electron content (TEC) maps. The EIA structures in the OI‐135.6 nm emission over the American landmass resemble, spatially and temporally, those observed in the GNSS‐TEC maps. The early morning EIA (EM‐EIA) crests are well separated in latitude and mostly located over the middle of South America during October–November. In February–April the crests are less separated in latitude and predominantly located over ...