Mostrando 1 - 5 Resultados de 5 Para Buscar 'Martínez-Romero E.', tiempo de consulta: 0.01s Limitar resultados
1
artículo
Human life became largely dependent on agricultural products after distinct crop-domestication events occurred around 10,000 years ago in different geographical sites. Domestication selected suitable plants for human agricultural practices with unexpected consequences on plant microbiota, which has notable effects on plant growth and health. Among other traits, domestication has changed root architecture, exudation, or defense responses that could have modified plant microbiota. Here we present the comparison of reported data on the microbiota from widely consumed cereals and legumes and their ancestors showing that different bacteria were found in domesticated and wild plant microbiomes in some cases. Considering the large variability in plant microbiota, adequate sampling efforts and function-based approaches are needed to further support differences between the microbiota from wild an...
2
artículo
Whole genome analysis of the Bradyrhizobium genus using average nucleotide identity (ANI) and phylogenomics showed the genus to be essentially monophyletic with seven robust groups within this taxon that includes nitrogen-fixing nodule forming bacteria as well as free living strains. Despite the wide genetic diversity of these bacteria no indication was found to suggest that the Bradyrhizobium genus have to split in different taxa. Bradyrhizobia have larger genomes than other genera of the Bradyrhizobiaceae family, probably reflecting their metabolic diversity and different lifestyles. Few plasmids in the sequenced strains were revealed from rep gene analysis and a relatively low proportion of the genome is devoted to mobile genetic elements. Sequence diversity of recA and glnII gene metadata was used to theoretically estimate the number of existing species and to predict how many would ...
3
artículo
The complete symbiosis island (SI) of Bradyrhizobium paxllaeri LMTR 21T, a mutualistic symbiont of the legume Phaseolus lunatus, was identified and analyzed. The SI was 646 kb in size, had lower G+C content than the genome average, and encoded not only nodulation and nitrogen fixation functions but also those for hydrogen uptake, vitamin and phytohormone biosynthesis, molybdenum transport, nonribosomal peptide synthesis, and type III secretion. Additionally, two divergent nodA genes were encoded in the SI. © 2019, Sociedade Brasileira de Microbiologia.
4
artículo
A. Lopez-Lopez, M. A. Rogel-Hernandez, Monica Rosenblueth, and L. Raymundo are thanked for technical assistance. This research was supported by Consejo Nacional de Ciencia y Tecnologia (Concytec), Integrated Crop Management Division of International Potato Center (CIP), FDA biol-111/UNALM, DGAPA-PAPIIT IN200709 project, and Red Biofag-Cyted. We are grateful to Dr. Andreas Oswald (CIP) for his support in the collection of samples.
5
artículo
The complete genome sequence of Bradyrhizobium icense LMTR 13T, a root nodule bacterium isolated from the legume Phaseolus lunatus, is reported here. The genome consists of a circular 8,322,773-bp chromosome which codes for a large and novel symbiotic island as well as genes putatively involved in soil and root colonization. © 2018 Ormeño-Orrillo et al.