1
tesis de maestría
Publicado 2022
Enlace
Enlace
El presente trabajo tiene el propósito de optimizar el performance del sistema de recomendación de libros basado en algoritmos de similaridad que permita sugerir recomendaciones de textos con contenidos relevantes a los usuarios del Centro de Recursos para el Aprendizaje y la Investigación de la Universidad Peruana Unión. El método CRISP DM se ha aplicado a un caso de sistema de recomendación de libros para el análisis de datos y optimización del modelo. El método de filtrado colaborativo ha permitido identificar las preferencias de los usuarios y la de otros usuarios con características similares para generar las predicciones; y se ha usado el modelo K-Nearest Neighbor con el algoritmo de similitud de coseno para calcular la mayor similitud entre los usuarios y los libros para ofrecer recomendaciones a los usuarios. En la experimentación se ha obtenido un buen performance del...