1
artículo
Publicado 2023
Enlace
Enlace
Spinel ferrites are versatile, low-cost, and abundant metal oxides with remarkable electronic and magnetic properties, which find several applications. Among them, they have been considered part of the next generation of electrochemical energy storage materials due to their variable oxidation states, low environmental toxicity, and possible synthesis through simple green chemical processing. However, most traditional procedures lead to the formation of poorly controlled materials (in terms of size, shape, composition, and/or crystalline structure). Thus, we report herein a cellulose nanofibersmediated green procedure to prepare controlled highly porous nanocorals comprised of spinel Zn-ferrites. Then, they presented remarkable applications as electrodes in supercapacitors, which were thoroughly and critically discussed. The spinel Zn-ferrites nanocorals supercapacitor showed a much highe...
2
artículo
Publicado 2023
Enlace
Enlace
Spinel ferrites are versatile, low-cost, and abundant metal oxides with remarkable electronic and magnetic properties, which find several applications. Among them, they have been considered part of the next generation of electrochemical energy storage materials due to their variable oxidation states, low environmental toxicity, and possible synthesis through simple green chemical processing. However, most traditional procedures lead to the formation of poorly controlled materials (in terms of size, shape, composition, and/or crystalline structure). Thus, we report herein a cellulose nanofibers-mediated green procedure to prepare controlled highly porous nanocorals comprised of spinel Zn-ferrites. Then, they presented remarkable applications as electrodes in supercapacitors, which were thoroughly and critically discussed. The spinel Zn-ferrites nanocorals supercapacitor showed a much high...
3
artículo
Publicado 2023
Enlace
Enlace
The design and development of efficient and electrocatalytic sensitive nickel oxide nanomaterials have attracted attention as they are considered cost-effective, stable, and abundant electrocatalytic sensors. However, although innumerable electrocatalysts have been reported, their large-scale production with the same activity and sensitivity remains challenging. In this study, we report a simple protocol for the gram-scale synthesis of uniform NiO nanoflowers (approximately 1.75 g) via a hydrothermal method for highly selective and sensitive electrocatalytic detection of hydrazine. The resultant material was characterized by scanning electron microscopy, X-ray photoelectron spectroscopy, and X-ray diffraction. For the production of the modified electrode, NiO nanoflowers were dispersed in Nafion and drop-cast onto the surface of a glassy carbon electrode (NiO NF/GCE). By cyclic voltammet...
4
artículo
Publicado 2023
Enlace
Enlace
The design and development of efficient and electrocatalytic sensitive nickel oxide nanomaterials have attracted attention as they are considered cost-effective, stable, and abundant electrocatalytic sensors. However, although innumerable electrocatalysts have been reported, their large-scale production with the same activity and sensitivity remains challenging. In this study, we report a simple protocol for the gram-scale synthesis of uniform NiO nanoflowers (approximately 1.75 g) via a hydrothermal method for highly selective and sensitive electrocatalytic detection of hydrazine. The resultant material was characterized by scanning electron microscopy, X-ray photoelectron spectroscopy, and X-ray diffraction. For the production of the modified electrode, NiO nanoflowers were dispersed in Nafion and drop-cast onto the surface of a glassy carbon electrode (NiO NF/GCE). By cyclic voltammet...