1
artículo
Publicado 2017
Enlace

Previous investigations on ionospheric responses to solar flares focused mainly on the photoionization caused by the increased X‐rays and extreme ultraviolet irradiance. However, little attention was paid to the related electrodynamics. In this letter, we explored the equatorial electric field (EEF) and electrojet (EEJ) in the ionosphere at Jicamarca during flares from 1998 to 2008. It is verified that solar flares increase dayside eastward EEJ but decrease dayside eastward EEF, revealing a negative correlation between EEJ and EEF. The decreased EEF weakens the equatorial fountain effect and depresses the low‐latitude electron density. During flares, the enhancement in the Cowling conductivity may modulate ionospheric dynamo and decrease the EEF. Besides, the decreased EEF is closely related to the enhanced ASY‐H index that qualitatively reflects Region 2 field‐aligned current (R...
2
artículo
Publicado 2016
Enlace

Recent studies based on the satellite observations demonstrated that the equatorial vertical plasma drift can also enhance near sunrise in a way similar to the prereversal enhancement. However, it is not clear whether the signature of this sunrise enhancement appears in observations with other sounding techniques. In this work, we explore the Jicamarca (12°S, 283.2°E) incoherent scatter radar measurements to present the evidence of sunrise enhancement in vertical plasma drift on 12 May and 10 June 2004, which are under magnetically quiet and solar minimum conditions. The effects of the sunrise enhancement on the ionosphere are, for the first time, investigated by analyzing the ionograms recorded by the Digisonde Portable Sounder at Jicamarca and conducting the Theoretical Ionospheric Model of the Earth in Institute of Geology and Geophysics, Chinese Academy of Sciences. The observation...
3
artículo
Publicado 2014
Enlace

Multiple instrumental observations including GPS total electron content (TEC), foF2 and hmF2 from ionosondes, vertical ion drift measurements from Communication/Navigation Outage Forecasting System, magnetometer data, and far ultraviolet airglow measured by Thermosphere, Ionosphere, Mesosphere Energetics and Dynamics/Global Ultraviolet Imager (TIMED/GUVI) are used to investigate the profound ionospheric disturbances at midlatitude and low latitude during the 14–17 July 2012 geomagnetic storm event, which was featured by prolonged southward interplanetary geomagnetic field component for about 30 h below −10 nT. In the East Asian/Australian sector, latitudinal profile of TEC variations in the main phase were characterized by three bands of increments and separated by weak depressions in the equatorial ionospheric anomaly (EIA) crest regions, which were caused by the combined effects ...
4
artículo
Publicado 2015
Enlace

The long‐duration positive storm (LPS) in the equatorial regions is relatively poorly understood. In this report, we conducted a statistical analysis of the LPS effects in the equatorial ionosphere over Jicamarca (12.0°S, 283.2°E) in 1998–2010. There are 250 geomagnetic storms (minimum Dst < −50 nT) in 1998–2010, but the ionosonde observations at Jicamarca are available only for 204 storms. A total of 46 LPSs are identified in terms of the criterion that the storm time relative deviation of peak density of F2 layer (NmF2) exceeds 25% for more than 6 h. A salient feature is that the occurrence of LPSs tends to decay approximately exponentially on the following days after the main phase of geomagnetic storms. The ratios of the number of equatorial LPSs to that of geomagnetic storms have no obvious dependence on season and solar activity. During the daytime LPSs, the distu...
5
artículo
Publicado 2016
Enlace

The 2015 St. Patrick's Day geomagnetic storm with SYM‐H value of −233 nT is an extreme space weather event in the current 24th solar cycle. In this work, we investigated the main mechanisms of the profound ionospheric disturbances over equatorial and low latitudes in the Asian‐Australian sector and the American sector during this super storm event. The results reveal that the disturbed electric fields, which comprise penetration electric fields (PEFs) and disturbance dynamo electric fields (DDEFs), play a decisive role in the ionospheric storm effects in low latitude and equatorial regions. PEFs occur on 17 March in both the American sector and the Asian‐Australian sector. The effects of DDEFs are also remarkable in the two longitudinal sectors. Both the DDEFs and PEFs show the notable local time dependence, which causes the sector differences in the characteristics of the di...