Mostrando 1 - 1 Resultados de 1 Para Buscar 'Jaita Aguilar, Jose Hugo', tiempo de consulta: 0.05s Limitar resultados
1
tesis de maestría
Hoy en día, los modelos de aprendizaje profundo representan el estado del arte en muchas tareas, lo que ha motivado a utilizarse en distintas aplicaciones reales. Varias de ellas se encuentran en campos como: la medicina, seguridad, finanzas, etc. en donde una predicción errónea puede llegar a ser fatal. Por lo tanto, necesitamos que los modelos no solo den una predicción, sino que además un grado de certeza acerca de ella, es decir, la incertidumbre en la predicción. En esta tesis se estudian dos tipos de incertidumbre: la epistémica (la cual captura la falta de certeza del modelo) y la aleatoria (generada por el ruido en los datos). La estimación de la incertidumbre epistémica es un desafío, siendo el enfoque bayesiano el más utilizado para abordarla (debido a las herramientas que nos ofrece), pero este viene con un costo computacional prohibitivo, evidenciado aún más en m...