Mostrando 1 - 7 Resultados de 7 Para Buscar 'Huaman-Mamani, F. A.', tiempo de consulta: 0.01s Limitar resultados
1
artículo
This work presents the results of the thermomechanical evaluation of geopolymeric concrete fabricated from mining tailings, rice husk ash and fine sand. Ten types of geopolymeric concrete were studied and the relationship between the initial volumetric concentrations of the components in the mixtures and the maximum resistance in uniaxial compression under conditions of variable temperature (between ambient and 600 ºC) was analyzed. The results revealed that increases in the concentration of mining tailings and fine sand lead to an increase in the value of the maximum mechanical resistance, in contrast, the increase in the concentration of rice husk ash led to a reduction in the value of the maximum mechanical resistance. Furthermore, increases in test temperature, up to 500 °C, led to systematic increases in maximum mechanical strength. Finally, the geopolymeric concretes presented a ...
2
artículo
Geopolymers are a class of inorganic synthetic materials that in recent years have received extensive interest of the scientific community, mainly due to the variety of applications in which they can be used. The synthesis of these materials is based on a chemical process called geopolymerization, which consists of the alkaline activation of amorphous alumina and silica oxides present in many natural raw materials and industrial solid waste. Therefore, the present work proposes the use of inorganic mining residues (mine tailings) from gold mining in the southern region of Peru, for the manufacture of geopolymeric concrete. The first part of the research focused on the physical, structural and microstructural characterization of the raw material (fine sand and mining tailings), then the volumetric matrix of mixtures for five types of geopolymer concrete was determined. Cylindrical samples...
3
artículo
Geopolymeric materials have recently been considered a revolutionary class of materials, due to the diversity of applications where they can be used, this derived from their good mechanical resistance, thermochemical stability and good fire resistance. From 1970 to the present, a notable increase has been observed in the number of scientific publications dealing with the synthesis and applications of geopolymeric materials with industrial application. Several publications have reported geopolymers as alternative materials to Portland cement, which will allow having a green construction industry in the coming years. The elaboration of geopolymeric materials is relatively simple, beginning with the identification of a source rich in amorphous aluminosilicates and a hardening compound (mainly alkaline in nature) which are properly mixed until a homogeneous and workable paste is obtained, th...
4
artículo
Geopolymers are lately being considered a group of revolutionary materials, due to their good mechanical properties, chemical stability, fire resistance and diversity of applications where they can be used. For the synthesis of geopolymers, a great variety of types of natural and artificial raw materials (residues from other industries) can be used, which allows obtaining materials with very specific applications. Two of the most important industries in Peru are also those that generate greater environmental degradation, mainly due to the waste they generate. The mining industry has a negative impact on the environment, generating a large amount of inorganic waste, while the construction industry does the same, generating large amounts of demolition waste. Both, mining and demolition waste, constitute a serious environmental problem, since currently they are only deposited without any al...
5
artículo
Geopolymeric mortars with volumetric fractions of 0.6:1:0.3 for a binder powder, fine sand and sodium hydroxide solution (12M), respectively; have been fabricated by mixing the solid materials and the subsequent addition of sodium hydroxide solution 12M to form a workable paste, to later be cured for 28 days at room temperature. The microstructures of the fabricated materials reveal the existence of two phases with notable difference, one continuous to the geopolymer binder phase and another discontinuous of fine sand particles agglutinated by the binder phase. Mechanical compression tests are performed at a constant compression rate of 0.05 mm/min and at temperatures ranged from room temperature to 500°C. The mechanical results are ranged from 19 and 69 MPa for all the materials studied. On the other hand, there was an increase in mechanical resistance up to test temperatures of 200°C...
6
artículo
The possibility of using biomass as a precursor of silicon carbide (SiC) has been studied for many years. In this research, reaction-formed silicon carbide was synthesized from sawdust residues of Peruvian wood. Residues were packed into cylindrical solid pieces through hot pressing and they were subsequently pyrolyzed in an inert atmosphere and infiltrated with metallic silicon in a vacuum atmosphere. SiC pieces were obtained with silicon remaining in their pores, so a chemical attack was performed to clean the samples. Mechanical and thermomechanical properties were evaluated in different environments to know the behavior of SiC through compression tests. The highest values were obtained at room temperature under normal conditions, a maximum stress of 686 MPa was achieved. In all cases, the samples had a fragile behavior as expected. In thermomechanical tests it was observed that resis...
7
artículo
Biomorphic SiC/Si compounds were fabricated from copaiba wood (Copaifera officinalis, natural wood native to Peru), by reactive infiltration of molten silicon in a porous carbon preform obtained by a controlled pyrolysis process of wood. Structural and microstructural characterization tests by X-ray diffraction and scanning electron microscopy, respectively, revealed, on the one hand, the presence of crystalline phases of SiC, Si and C, and on the other, the typical morphology of this type of material, which it consists of a continuous SiC scaffold with elongated channels in the direction of tree growth and the presence of residual Si and C located mainly in the porosities of the material. The mechanical behavior in uniaxial compression was also studied at a constant compression rate of 0.05 mm/min and as a function of temperature (from ambient to 1400 ºC) and test atmosphere (ambient a...