Mostrando 1 - 3 Resultados de 3 Para Buscar 'Gines Colana, Milca', tiempo de consulta: 0.03s Limitar resultados
1
tesis de grado
La presente tesis se enfoca en comparar el desempeño de los sistemas gestores de base de datos PostgreSQL y MySQL en cuanto al tiempo de respuesta y uso de memoria, utilizando el conjunto de datos académicos proporcionados por la Dirección de Actividades y Servicios Académicos de la Universidad Nacional Jorge Basadre Grohmann – Tacna. Para lo cual se utilizó la metodología de benchmarking que consiste en comparar características de rendimiento de diferentes tecnologías, en nuestro caso los sistemas gestores de base de datos PostgreSQL y MySQL; para la obtención de resultados se utilizó el software JMeter, con los cuales se pudo hacer un análisis estadístico e inferencial. Finalmente se verificó que el sistema gestor de base de datos PostgreSQL ejecutó 200 consultas a nuestra base de datos de 325 536 registros en 12 tablas con un tiempo promedio de 198 milisegundos, mientr...
2
artículo
In the field of databases, the lack of traceability of transactions or operations in a database is vital to respond to incidents that may originate within them, such as the alteration of unauthorized information. This article proposes an auditing model to mitigate risk using Oracle's object and transaction auditing approach. Finally, a laboratory was implemented in which the proposed model was deployed, ensuring the information's confidentiality, integrity, and availability.
3
artículo
With the development of the pandemic in Peru, the number of deaths has been increasing and unfortunately the appropriate measures have not been taken, this because we do not have a tool that allows us to know the number of possible deaths in a given time. The objective of this article is to propose a tool capable of predicting the number of deaths from COVID-19 as a function of time. The methodology used was artificial neural networks using time series with information obtained from the Ministry of Health of the Peruvian state through its open data portal. The results achieved had a mean square error of 0.0037 and a loss of 0.0480. The results obtained throughout the article confirm the validity of this tool and its effectiveness in predicting the number of deaths from COVID 19.