1
artículo
Publicado 2019
Enlace
Enlace
The present study presents a detailed analysis of the diurnal and monthly cycles the surface boundary layer and of surface energy balance in a sparse natural vegetation canopy on Huancayo observatory (12.04° S, 75.32° W, 3313 m ASL), which is located in the central Andes of Peru (Mantaro Valley) during an entire year (May 2018-April 2019). We used a set of meteorological sensors (temperature, relative humidity, wind) installed in a gradient tower 30 m high, a set of radiative sensors to measure all irradiance components, and a set of tensiometers and heat flux plate to measure soil moisture, soil temperatures and soil heat flux. To estimate turbulent energy fluxes (sensible and latent), two flux-gradient methods: the aerodynamic method and the Bowen-ratio energy-balance method were used. The ground heat flux at surface was estimated using a molecular heat transfer equation. The results...
2
artículo
Publicado 2021
Enlace
Enlace
A set of instruments to measure several physical, microphysical, and radiative properties of the atmosphere and clouds are essential to identify, understand and, subsequently, forecast and prevent the effects of extreme meteorological events, such as severe rainfall, hailstorms, frost events and high pollution events, that can occur with some regularity in the central Andes of Peru. However, like many other Latin American countries, Peru lacks an adequate network of meteorological stations to identify and analyze extreme meteorological events. To partially remedy this deficiency, the Geophysical Institute of Peru has installed a set of specialized sensors (LAMAR) on the Huancayo observatory (12.04◦ S, 75.32◦ W, 3350 m ASL), located in the Mantaro river basin, which is a part of the central Andes of Peru, especially in agricultural areas. LAMAR consists of a set of sensors that are us...
3
artículo
Publicado 2020
Enlace
Enlace
In the Central Andes of Peru, convective and stratiform rainfall occurs, frequently associated with convective storms. The raindrop size distributions (RSD), measured by a Parsivel-2 optical disdrometer, were characterized by the variation of their normalized parameters. The RSD dataset includes measurements corresponding to 18 months between 2017 and 2019. As a result, it was found that the mass-weighted mean diameter Dm and the Nw parameter present respectively high and low values, in the interval of 15-20 LST (local standard time), wherein deeper and more active clouds appear. The events including convective rainfall contribute 67.5% of the accumulated total, wherein 92% corresponds to the 15-20 LST interval. It is concluded that the spectral variability of the RSD is strongly controlled by the cloudiness configuration field developing over the west (convection over highlands) and eas...
4
artículo
Publicado 2020
Enlace
Enlace
The work carried out a characterization of tropospheric vertical profiles in rainy and dry seasons by behavior of thermodynamic indices obtained with the WRF model for the period January 2018–March 2019 on the central Andes of Peru and its relationship with rainfall in the region. A case study was also analyzed using sounding observation data. The precipitation observed were taken from 8 meteorological stations located in the Mantaro basin belonging to the National Meteorological Service of Peru. As a results, it was found that the behavior of the thermodynamic parameters responds to the general characteristics of each period. The level of condensation was always higher in the dry period, in which the lower troposphere was also more stable. The KI, TT, Sweat and CAPE indices were always higher in the rainy season, as was water vapor mixing ratio. The vertical shear was mostly higher in...
5
artículo
Publicado 2020
Enlace
Enlace
The life cycle of clouds consists of mainly into three phases, namely developing, mature, and dissipating phases. The information about the vertical structure of the precipitation during different phases of development will improve their representation in the cloud models. Whether specific regimes over Peru favor the formation or decay of the cloud systems and how their intensity varies during different phases of development will provide the insight into the precipitation structure over Peru. We used two satellite-based data, namely from Global Precipitation Measurement dual Precipitation Radar (GPM-DPR) and GOES (Geostationary Operational Environmental Satellite) to expose the vertical structure of precipitation during different phases of the precipitating cloud systems (PCSs). A PCS is defined using the GPM based near surface rainfall data and then GOES-based brightness temperature (BT...
6
artículo
Publicado 2021
Enlace
Enlace
The present study comes under the project “MAGNET-IGP: Strengthening the research line in physics and microphysics of the atmosphere (Agreement No 010-2017-FONDECYT)”. Yamina Silva-Vidal, Jose Luis Flores-Rojas and Jairo Valdivia-Prado would like to acknowledge the Peruvian PPR068 programme "Reducción de vulnerabilidad y atención de emergencias por desastres" for financial support of their work. This work was done using computational resources, HPC-Linux -Cluster, from Laboratorio de Dinámica de Fluidos Geofísicos Computacionales at Instituto Geofísico del Perú (Grants 101-2014-FONDECYT, SPIRALES2012, IRD-IGP, Manglares IGP-IDRC, PP068 program).