1
tesis doctoral
Publicado 2019
Enlace
Enlace
En esta tesis, nos interesa caracterizar las propiedades dimensionales típicas (genéricas) de medidas invariantes asociadas al sistema de cambio completo (full-shift system), (X, T ), en un espacio producto cuyo alfabeto es no numerable. Se muestra que el conjunto de medidas invariantes que tienen dimensión de Hausdorff superior cero y dimensión de empaquetamiento inferior infinita es un subconjunto Gδ-denso de M(T ), el espacio de medidas T -invariantes dotadas con la topología débil. También se muestra que el conjunto de medidas invariantes con tasa de recurrencia superior igual a infinito e inferior igual a cero es un subconjunto Gδ-denso de M(T ). Además, se muestra que el conjunto de medidas invariantes con un indicador de tiempo de espera cuantitativo superior infinito e inferior cero es residual en M(T ). Para sistemas dinámicos topológicos con un conjunto denso de med...
2
tesis de grado
Publicado 2019
Enlace
Enlace
El objetivo de este trabajo es demostrar que la estabilidad local en una singularidad hiperbólica es una propiedad genérica dentro del conjunto de campos vectoriales de clase Cʳ, r ≥ 1, haciendo uso de los teoremas de Hartman-Grobman y transversalidad de Thom. Se concluye, de lo anterior, que los campos vectoriales de clase Cʳ, con únicamente singularidades hiperbólicas y con la propiedad de ser localmente estables son "típicos”. Esto significa que la presencia de sistemas dinámicos con “buen” comportamiento es representativo en un sentido topológico.