Mostrando 1 - 4 Resultados de 4 Para Buscar 'Berne, A.', tiempo de consulta: 0.60s Limitar resultados
1
artículo
In mountainous regions, snow accumulation on the ground is crucial for mountain hydrology and water resources. The present study investigates the link between the spatial variability in snowfall and in snow accumulation in the Swiss Alps. A mobile polarimetric X-band radar deployed in the area of Davos (Switzerland) collected valuable and continuous information on small-scale precipitation for the winter seasons of 2009/2010 and 2010/2011. Local measurements of snow accumulation were collected with airborne laser-scanning for the winters of 2007/2008 and 2008/2009. The spatial distribution of snow accumulation exhibits a strong interannual consistency that can be generalized over the winters in the area. This unique configuration makes the comparison of the variability in total snowfall amount estimated from radar and in snow accumulation possible over the diverse winter periods. As expe...
2
artículo
Orographic lifting of air masses and other topographically modified flows induce cloud and precipitation formation at larger scales and preferential deposition of precipitation at smaller scales. In this study, we examine orographic effects on small‐scale snowfall patterns in Alpine terrain. A polarimetric X‐band radar was deployed in the area of Davos (Switzerland) to determine the spatial variability of precipitation. In order to relate measured precipitation fields to flow dynamics, we model flow fields with the atmospheric prediction model “Advanced Regional Prediction System.” Additionally, we compare radar reflectivity fields with snow accumulation at the surface as modeled by Alpine3D. We investigate the small‐scale precipitation dynamics for one heavy snowfall event in March 2011 at a high resolution of 75 m. The analysis of the vertical and horizontal distribution of r...
3
artículo
The radar network deployed in southern France during the first special observing period (SOP 1) of the Hydrological Cycle in the Mediterranean Experiment (HyMeX) was designed to precisely document the 3D structure of moist upstream flow impinging on complex terrain as a function of time, height, and along-barrier distance, and surface rainfall patterns associated with orographic precipitation events. This deployment represents one of the most ambitious field experiments yet, endeavoring to collect high-quality observations of thunderstorms and precipitation systems developing over and in the vicinity of a major mountain chain. Radar observations collected during HyMeX represent a valuable, and potentially unique, dataset that will be used to improve our knowledge of physical processes at play within coastal orographic heavy precipitating systems and to develop, and evaluate, novel radar-...
4
artículo
An extensive evaluation of nine global-scale high-resolution satellite-based rainfall (SBR) products is performed using a minimum of 6 years (within the period of 2000-13) of reference rainfall data derived from rain gauge networks in nine mountainous regions across the globe. The SBR products are compared to a recently released global reanalysis dataset from the European Centre for Medium-Range Weather Forecasts (ECMWF). The study areas include the eastern Italian Alps, the Swiss Alps, the western Black Sea of Turkey, the French Cévennes, the Peruvian Andes, the Colombian Andes, the Himalayas over Nepal, the Blue Nile in East Africa, Taiwan, and the U.S. Rocky Mountains. Evaluation is performed at annual, monthly, and daily time scales and 0.25° spatial resolution. The SBR datasets are based on the following retrieval algorithms: Tropical Rainfall Measuring Mission Multisatellite Prec...