1
artículo
From January through March 2017, a series of extreme precipitation events occurred in coastal Peru, causing severe floods with hundreds of human casualties and billions of dollars in economic losses. The extreme precipitation was a result of unusually strong recurrent patterns of atmospheric and oceanic conditions, including extremely warm coastal sea surface temperatures (SST) and weakened trade winds. These climatic features and their causal relationship with the Peruvian precipitation were examined. Diagnostic analysis and model experiments suggest that an atmospheric forcing in early 2017, which was moderately linked to the Trans-Niño Index (TNI), initiated the local SST warming along coastal Peru that later expanded to the equator. In January 2017, soil moisture was increased by an unusual expansion of Amazonian rainfall. By March, localized and robust SST warming provided positive...
2
artículo
Publicado 2019
Enlace
Enlace
Three strategies for creating probabilistic forecast outlooks for El Niño-Southern Oscillation (ENSO) are compared. One is subjective and is currently used by the NOAA/Climate Prediction Center (CPC) to produce official ENSO outlooks. A second is purely objective and is based on the North American Multimodel Ensemble (NMME).Anew third strategy is proposed in which the forecaster only provides the expected value of the Niño-3.4 index, and then categorical probabilities are objectively determined based on past skill. The new strategy results in more confident probabilities compared to the subjective approach and higher verification scores, while avoiding the significant forecast busts that sometimes afflict the NMME-based objective approach. The higher verification scores of the new strategy appear to result from the added value that forecasters provide in predicting the mean, combined w...