1    
    
                 tesis de grado
            
         
                                                                           Publicado 2025                                                                                    
                        
                           
                           Enlace                        
                     
               
            
                           Enlace                        
                     
               
                  El arroz es un cultivo de gran importancia a nivel mundial, pero su producción se ve amenazada por diversas enfermedades que afectan el rendimiento y calidad del grano. En este contexto, la presente investigación realizó una revisión sistemática de las técnicas de Machine Learning aplicadas en la detección de enfermedades en cultivos de arroz. Se empleó la metodología Prisma para la selección de estudios relevantes y se compararon diferentes modelos de aprendizaje profundo y tradicional. Los resultados evidenciaron que las redes neuronales convolucionales (CNN), especialmente aquellas con Transfer Learning, presentaron los mejores desempeños en términos de precisión y exactitud. También, se identificó que la integración de datos multiespectrales y térmicos pueden mejorar la capacidad de detección. La discusión analizó la coherencia de estos hallazgos con la literatura...