Mostrando 1 - 2 Resultados de 2 Para Buscar 'Anastacio Sandoval, José Elihú', tiempo de consulta: 0.02s Limitar resultados
1
tesis de grado
En el año 1917 el matemático japonés Soichi Kakeya propuso el siguiente problema conocido mundialmente como el Problema de la aguja de Kakeya: ¿Cuál es el área mínima que se requiere para rotar continuamente un segmento de línea de longitud 1 en el plano, de manera que después del giro vuelva a ocupar su posición original pero con los extremos invertidos? De la pregunta anterior se ve claramente que el giro es de 180° e implícitamente se pide que tal conjunto con área mínima, conocido como conjunto de Kakeya, sea convexo. Este problema tendría una solución trivial a no ser por una restricción: EL ÁREA DEBE SER MÍNIMA ... pero si no fuera por esto dejaría de ser interesante pues fácilmente giraríamos este segmento de línea unitario(al que llamaremos aguja) por su punto medio y así se barreña un área ¡ (que corresponde al círculo de radio ~)- Esta solución triv...
2
tesis de maestría
Al aplicar el método de Newton en el plano complejo, se observa que existen puntos muy próximos entre sí pero cuyas órbitas exhiben comportamientos muy diferentes al aplicarles repetidas veces el método en cuestión. Esto dificulta la elección de puntos del plano complejo que sirvan como conjunto de inicialización de tal método. Dado que el conjunto de inicialización, o denominado también conjunto semilla, influye significativamente en la eficiencia computacional del método, es crucial construir un conjunto de cardinal mínimo en el que se asegure la convergencia a cada una de las raíces. Esto puede lograrse mediante el estudio de la dinámica global de este método, pues de esta forma se puede determinar qué puntos del plano complejo tienen un comportamiento caótico al aplicarles el método de Newton, para así evitarlos. Por esa razón, se describe en primer lugar la geom...