Modelo basado en redes neuronales convolucionales para clasificar artesanía en la empresa Artelix
Descripción del Articulo
El sector de artesanía proporciona un sustento económico a un gran número de personas y contribuye a las exportaciones e ingresos de divisas del Perú. Este sector está compuesto por pequeñas y medianas empresas según Ministerio de Comercio Exterior y Turismo. Por otro lado, se caracterizan por reali...
Autores: | , |
---|---|
Formato: | tesis de grado |
Fecha de Publicación: | 2023 |
Institución: | Universidad Privada del Norte |
Repositorio: | UPN-Institucional |
Lenguaje: | español |
OAI Identifier: | oai:repositorio.upn.edu.pe:11537/36716 |
Enlace del recurso: | https://hdl.handle.net/11537/36716 |
Nivel de acceso: | acceso embargado |
Materia: | Inteligencia artificial Redes neuronales artificiales Clasificación Artesanía Reconocimiento de imágenes Aprendizaje Redes neuronales convolucionales https://purl.org/pe-repo/ocde/ford#2.02.04 |
Sumario: | El sector de artesanía proporciona un sustento económico a un gran número de personas y contribuye a las exportaciones e ingresos de divisas del Perú. Este sector está compuesto por pequeñas y medianas empresas según Ministerio de Comercio Exterior y Turismo. Por otro lado, se caracterizan por realizar sus procesos de manera manual, y en algunos casos carecen de maquinarias o el uso de tecnología. En este contexto, la automatización de tareas mediante la clasificación de imágenes ha sido aplicada en diversos sectores industriales y comerciales. Se desarrolla un modelo de red neuronal convolucional basado en transferencia de aprendizaje con el objetivo de que el modelo realice una clasificación automática de los productos de bisutería. Para esta tarea, se realizó la extracción de características que permita identificar cada categoría de imagen como: su color, forma, diseños y textura. El conjunto de datos estuvo compuesto de 2000 imágenes y una muestra de 323 imágenes. Durante el pre test, la eficiencia se tuvo un 77.85% en la clasificación de productos de bisutería y con un tiempo de 1350 segundos, mientras en el post test al emplear el modelo de red neuronal convolucional la eficiencia aumento al 97.09% y el tiempo se redujo a 9.9 segundos. Además, el resultado del modelo de transferencia de aprendizaje, se logró una eficacia promedio del 91% en la clasificación de categorías de bisutería. En resumen, se destaca el potencial de las RNC y las adaptaciones de arquitecturas que ayudan en los procesos de clasificación de diversos sectores. |
---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).