Multivariate analysis for the classification of chocolate according to its percentage of Cocoa by using Terahertz Time-Domain Spectroscopy (THz-TDS)

Descripción del Articulo

Terahertz time-domain spectroscopy is a useful technique for determining some physical characteristics of materials, and is based on selective frequency absorption of a broad-spectrum electromagnetic pulse. In order to investigate the potential of this technology to classify cocoa percentages in cho...

Descripción completa

Detalles Bibliográficos
Autores: Oblitas, Jimy, Ruiz, Jorge
Formato: objeto de conferencia
Fecha de Publicación:2020
Institución:Universidad Privada del Norte
Repositorio:UPN-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.upn.edu.pe:11537/31120
Enlace del recurso:https://hdl.handle.net/11537/31120
https://doi.org/10.3390/foods_2020-08029
Nivel de acceso:acceso abierto
Materia:Espectroscopia
Cacao
Chocolate
Tecnología alimentaria
Análisis multivariante
Porcentaje de cacao
https://purl.org/pe-repo/ocde/ford#2.11.04
id UUPN_bc61456f10b9c1d85aaf5cc66b5a198d
oai_identifier_str oai:repositorio.upn.edu.pe:11537/31120
network_acronym_str UUPN
network_name_str UPN-Institucional
repository_id_str 1873
dc.title.es_PE.fl_str_mv Multivariate analysis for the classification of chocolate according to its percentage of Cocoa by using Terahertz Time-Domain Spectroscopy (THz-TDS)
title Multivariate analysis for the classification of chocolate according to its percentage of Cocoa by using Terahertz Time-Domain Spectroscopy (THz-TDS)
spellingShingle Multivariate analysis for the classification of chocolate according to its percentage of Cocoa by using Terahertz Time-Domain Spectroscopy (THz-TDS)
Oblitas, Jimy
Espectroscopia
Cacao
Chocolate
Tecnología alimentaria
Análisis multivariante
Porcentaje de cacao
https://purl.org/pe-repo/ocde/ford#2.11.04
title_short Multivariate analysis for the classification of chocolate according to its percentage of Cocoa by using Terahertz Time-Domain Spectroscopy (THz-TDS)
title_full Multivariate analysis for the classification of chocolate according to its percentage of Cocoa by using Terahertz Time-Domain Spectroscopy (THz-TDS)
title_fullStr Multivariate analysis for the classification of chocolate according to its percentage of Cocoa by using Terahertz Time-Domain Spectroscopy (THz-TDS)
title_full_unstemmed Multivariate analysis for the classification of chocolate according to its percentage of Cocoa by using Terahertz Time-Domain Spectroscopy (THz-TDS)
title_sort Multivariate analysis for the classification of chocolate according to its percentage of Cocoa by using Terahertz Time-Domain Spectroscopy (THz-TDS)
author Oblitas, Jimy
author_facet Oblitas, Jimy
Ruiz, Jorge
author_role author
author2 Ruiz, Jorge
author2_role author
dc.contributor.author.fl_str_mv Oblitas, Jimy
Ruiz, Jorge
dc.subject.es_PE.fl_str_mv Espectroscopia
Cacao
Chocolate
Tecnología alimentaria
Análisis multivariante
Porcentaje de cacao
topic Espectroscopia
Cacao
Chocolate
Tecnología alimentaria
Análisis multivariante
Porcentaje de cacao
https://purl.org/pe-repo/ocde/ford#2.11.04
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.11.04
description Terahertz time-domain spectroscopy is a useful technique for determining some physical characteristics of materials, and is based on selective frequency absorption of a broad-spectrum electromagnetic pulse. In order to investigate the potential of this technology to classify cocoa percentages in chocolates, the terahertz spectra (0.5–10 THz) of five chocolate samples (50%, 60%, 70%, 80% and 90% of cocoa) were examined. The acquired data matrices were analyzed with the MATLAB 2019b application, from which the dielectric function was obtained along with the absorbance curves, and were classified by using 24 mathematical classification models, achieving differentiations of around 93% obtained by the Gaussian SVM algorithm model with a kernel scale of 0.35 and a one-against-one multiclass method. It was concluded that the combined processing and classification of images obtained from the terahertz time-domain spectroscopy and the use of machine learning algorithms can be used to successfully classify chocolates with different percentages of cocoa.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2022-08-09T20:56:34Z
dc.date.available.none.fl_str_mv 2022-08-09T20:56:34Z
dc.date.issued.fl_str_mv 2020-11-12
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
dc.identifier.citation.es_PE.fl_str_mv Oblitas, J., & Ruiz, J. (2020). Multivariate analysis for the classification of chocolate according to its percentage of Cocoa by using Terahertz Time-Domain Spectroscopy (THz-TDS). Proceedings of The 1st International Electronic Conference on Science and Functional Foods. Proceedings of The 1st International Electronic Conference on Food Science and Functional Foods, 70(1). https://doi.org/10.3390/foods_2020-08029
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/11537/31120
dc.identifier.journal.es_PE.fl_str_mv Proceedings of The 1st International Electronic Conference on Food Science and Functional Foods
dc.identifier.doi.none.fl_str_mv https://doi.org/10.3390/foods_2020-08029
identifier_str_mv Oblitas, J., & Ruiz, J. (2020). Multivariate analysis for the classification of chocolate according to its percentage of Cocoa by using Terahertz Time-Domain Spectroscopy (THz-TDS). Proceedings of The 1st International Electronic Conference on Science and Functional Foods. Proceedings of The 1st International Electronic Conference on Food Science and Functional Foods, 70(1). https://doi.org/10.3390/foods_2020-08029
Proceedings of The 1st International Electronic Conference on Food Science and Functional Foods
url https://hdl.handle.net/11537/31120
https://doi.org/10.3390/foods_2020-08029
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.*.fl_str_mv Atribución-NoComercial-CompartirIgual 3.0 Estados Unidos de América
dc.rights.uri.*.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/3.0/us/
eu_rights_str_mv openAccess
rights_invalid_str_mv Atribución-NoComercial-CompartirIgual 3.0 Estados Unidos de América
https://creativecommons.org/licenses/by-nc-sa/3.0/us/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv MDPI
dc.publisher.country.es_PE.fl_str_mv CH
dc.source.es_PE.fl_str_mv Universidad Privada del Norte
Repositorio Institucional - UPN
dc.source.none.fl_str_mv reponame:UPN-Institucional
instname:Universidad Privada del Norte
instacron:UPN
instname_str Universidad Privada del Norte
instacron_str UPN
institution UPN
reponame_str UPN-Institucional
collection UPN-Institucional
bitstream.url.fl_str_mv https://repositorio.upn.edu.pe/bitstream/11537/31120/4/Multivariate%20analysis%20for%20the%20classification%20of%20chocolate%20according%20to%20its%20percentage%20of%20Cocoa.pdf.txt
https://repositorio.upn.edu.pe/bitstream/11537/31120/5/Multivariate%20analysis%20for%20the%20classification%20of%20chocolate%20according%20to%20its%20percentage%20of%20Cocoa.pdf.jpg
https://repositorio.upn.edu.pe/bitstream/11537/31120/1/Multivariate%20analysis%20for%20the%20classification%20of%20chocolate%20according%20to%20its%20percentage%20of%20Cocoa.pdf
https://repositorio.upn.edu.pe/bitstream/11537/31120/2/license_rdf
https://repositorio.upn.edu.pe/bitstream/11537/31120/3/license.txt
bitstream.checksum.fl_str_mv 028e2af0e789d73354b5f132c142e6d8
83433cceb1eeefb29b92f24e189c7e32
4ca489dd162563e09987090a228a1bc9
80294ba9ff4c5b4f07812ee200fbc42f
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UPN
repository.mail.fl_str_mv jordan.rivero@upn.edu.pe
_version_ 1752944221631807488
spelling Oblitas, JimyRuiz, Jorge2022-08-09T20:56:34Z2022-08-09T20:56:34Z2020-11-12Oblitas, J., & Ruiz, J. (2020). Multivariate analysis for the classification of chocolate according to its percentage of Cocoa by using Terahertz Time-Domain Spectroscopy (THz-TDS). Proceedings of The 1st International Electronic Conference on Science and Functional Foods. Proceedings of The 1st International Electronic Conference on Food Science and Functional Foods, 70(1). https://doi.org/10.3390/foods_2020-08029https://hdl.handle.net/11537/31120Proceedings of The 1st International Electronic Conference on Food Science and Functional Foodshttps://doi.org/10.3390/foods_2020-08029Terahertz time-domain spectroscopy is a useful technique for determining some physical characteristics of materials, and is based on selective frequency absorption of a broad-spectrum electromagnetic pulse. In order to investigate the potential of this technology to classify cocoa percentages in chocolates, the terahertz spectra (0.5–10 THz) of five chocolate samples (50%, 60%, 70%, 80% and 90% of cocoa) were examined. The acquired data matrices were analyzed with the MATLAB 2019b application, from which the dielectric function was obtained along with the absorbance curves, and were classified by using 24 mathematical classification models, achieving differentiations of around 93% obtained by the Gaussian SVM algorithm model with a kernel scale of 0.35 and a one-against-one multiclass method. It was concluded that the combined processing and classification of images obtained from the terahertz time-domain spectroscopy and the use of machine learning algorithms can be used to successfully classify chocolates with different percentages of cocoa.Revisión por paresCajamarcaapplication/pdfengMDPICHinfo:eu-repo/semantics/openAccessAtribución-NoComercial-CompartirIgual 3.0 Estados Unidos de Américahttps://creativecommons.org/licenses/by-nc-sa/3.0/us/Universidad Privada del NorteRepositorio Institucional - UPNreponame:UPN-Institucionalinstname:Universidad Privada del Norteinstacron:UPNEspectroscopiaCacaoChocolateTecnología alimentariaAnálisis multivariantePorcentaje de cacaohttps://purl.org/pe-repo/ocde/ford#2.11.04Multivariate analysis for the classification of chocolate according to its percentage of Cocoa by using Terahertz Time-Domain Spectroscopy (THz-TDS)info:eu-repo/semantics/conferenceObjectTEXTMultivariate analysis for the classification of chocolate according to its percentage of Cocoa.pdf.txtMultivariate analysis for the classification of chocolate according to its percentage of Cocoa.pdf.txtExtracted texttext/plain18010https://repositorio.upn.edu.pe/bitstream/11537/31120/4/Multivariate%20analysis%20for%20the%20classification%20of%20chocolate%20according%20to%20its%20percentage%20of%20Cocoa.pdf.txt028e2af0e789d73354b5f132c142e6d8MD54THUMBNAILMultivariate analysis for the classification of chocolate according to its percentage of Cocoa.pdf.jpgMultivariate analysis for the classification of chocolate according to its percentage of Cocoa.pdf.jpgGenerated Thumbnailimage/jpeg4378https://repositorio.upn.edu.pe/bitstream/11537/31120/5/Multivariate%20analysis%20for%20the%20classification%20of%20chocolate%20according%20to%20its%20percentage%20of%20Cocoa.pdf.jpg83433cceb1eeefb29b92f24e189c7e32MD55ORIGINALMultivariate analysis for the classification of chocolate according to its percentage of Cocoa.pdfMultivariate analysis for the classification of chocolate according to its percentage of Cocoa.pdfapplication/pdf578976https://repositorio.upn.edu.pe/bitstream/11537/31120/1/Multivariate%20analysis%20for%20the%20classification%20of%20chocolate%20according%20to%20its%20percentage%20of%20Cocoa.pdf4ca489dd162563e09987090a228a1bc9MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81037https://repositorio.upn.edu.pe/bitstream/11537/31120/2/license_rdf80294ba9ff4c5b4f07812ee200fbc42fMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.upn.edu.pe/bitstream/11537/31120/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD5311537/31120oai:repositorio.upn.edu.pe:11537/311202022-08-10 03:03:34.414Repositorio Institucional UPNjordan.rivero@upn.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.774068
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).