Multivariate analysis for the classification of chocolate according to its percentage of Cocoa by using Terahertz Time-Domain Spectroscopy (THz-TDS)
Descripción del Articulo
Terahertz time-domain spectroscopy is a useful technique for determining some physical characteristics of materials, and is based on selective frequency absorption of a broad-spectrum electromagnetic pulse. In order to investigate the potential of this technology to classify cocoa percentages in cho...
Autores: | , |
---|---|
Formato: | objeto de conferencia |
Fecha de Publicación: | 2020 |
Institución: | Universidad Privada del Norte |
Repositorio: | UPN-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.upn.edu.pe:11537/31120 |
Enlace del recurso: | https://hdl.handle.net/11537/31120 https://doi.org/10.3390/foods_2020-08029 |
Nivel de acceso: | acceso abierto |
Materia: | Espectroscopia Cacao Chocolate Tecnología alimentaria Análisis multivariante Porcentaje de cacao https://purl.org/pe-repo/ocde/ford#2.11.04 |
id |
UUPN_bc61456f10b9c1d85aaf5cc66b5a198d |
---|---|
oai_identifier_str |
oai:repositorio.upn.edu.pe:11537/31120 |
network_acronym_str |
UUPN |
network_name_str |
UPN-Institucional |
repository_id_str |
1873 |
dc.title.es_PE.fl_str_mv |
Multivariate analysis for the classification of chocolate according to its percentage of Cocoa by using Terahertz Time-Domain Spectroscopy (THz-TDS) |
title |
Multivariate analysis for the classification of chocolate according to its percentage of Cocoa by using Terahertz Time-Domain Spectroscopy (THz-TDS) |
spellingShingle |
Multivariate analysis for the classification of chocolate according to its percentage of Cocoa by using Terahertz Time-Domain Spectroscopy (THz-TDS) Oblitas, Jimy Espectroscopia Cacao Chocolate Tecnología alimentaria Análisis multivariante Porcentaje de cacao https://purl.org/pe-repo/ocde/ford#2.11.04 |
title_short |
Multivariate analysis for the classification of chocolate according to its percentage of Cocoa by using Terahertz Time-Domain Spectroscopy (THz-TDS) |
title_full |
Multivariate analysis for the classification of chocolate according to its percentage of Cocoa by using Terahertz Time-Domain Spectroscopy (THz-TDS) |
title_fullStr |
Multivariate analysis for the classification of chocolate according to its percentage of Cocoa by using Terahertz Time-Domain Spectroscopy (THz-TDS) |
title_full_unstemmed |
Multivariate analysis for the classification of chocolate according to its percentage of Cocoa by using Terahertz Time-Domain Spectroscopy (THz-TDS) |
title_sort |
Multivariate analysis for the classification of chocolate according to its percentage of Cocoa by using Terahertz Time-Domain Spectroscopy (THz-TDS) |
author |
Oblitas, Jimy |
author_facet |
Oblitas, Jimy Ruiz, Jorge |
author_role |
author |
author2 |
Ruiz, Jorge |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Oblitas, Jimy Ruiz, Jorge |
dc.subject.es_PE.fl_str_mv |
Espectroscopia Cacao Chocolate Tecnología alimentaria Análisis multivariante Porcentaje de cacao |
topic |
Espectroscopia Cacao Chocolate Tecnología alimentaria Análisis multivariante Porcentaje de cacao https://purl.org/pe-repo/ocde/ford#2.11.04 |
dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.11.04 |
description |
Terahertz time-domain spectroscopy is a useful technique for determining some physical characteristics of materials, and is based on selective frequency absorption of a broad-spectrum electromagnetic pulse. In order to investigate the potential of this technology to classify cocoa percentages in chocolates, the terahertz spectra (0.5–10 THz) of five chocolate samples (50%, 60%, 70%, 80% and 90% of cocoa) were examined. The acquired data matrices were analyzed with the MATLAB 2019b application, from which the dielectric function was obtained along with the absorbance curves, and were classified by using 24 mathematical classification models, achieving differentiations of around 93% obtained by the Gaussian SVM algorithm model with a kernel scale of 0.35 and a one-against-one multiclass method. It was concluded that the combined processing and classification of images obtained from the terahertz time-domain spectroscopy and the use of machine learning algorithms can be used to successfully classify chocolates with different percentages of cocoa. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2022-08-09T20:56:34Z |
dc.date.available.none.fl_str_mv |
2022-08-09T20:56:34Z |
dc.date.issued.fl_str_mv |
2020-11-12 |
dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
dc.identifier.citation.es_PE.fl_str_mv |
Oblitas, J., & Ruiz, J. (2020). Multivariate analysis for the classification of chocolate according to its percentage of Cocoa by using Terahertz Time-Domain Spectroscopy (THz-TDS). Proceedings of The 1st International Electronic Conference on Science and Functional Foods. Proceedings of The 1st International Electronic Conference on Food Science and Functional Foods, 70(1). https://doi.org/10.3390/foods_2020-08029 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/11537/31120 |
dc.identifier.journal.es_PE.fl_str_mv |
Proceedings of The 1st International Electronic Conference on Food Science and Functional Foods |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.3390/foods_2020-08029 |
identifier_str_mv |
Oblitas, J., & Ruiz, J. (2020). Multivariate analysis for the classification of chocolate according to its percentage of Cocoa by using Terahertz Time-Domain Spectroscopy (THz-TDS). Proceedings of The 1st International Electronic Conference on Science and Functional Foods. Proceedings of The 1st International Electronic Conference on Food Science and Functional Foods, 70(1). https://doi.org/10.3390/foods_2020-08029 Proceedings of The 1st International Electronic Conference on Food Science and Functional Foods |
url |
https://hdl.handle.net/11537/31120 https://doi.org/10.3390/foods_2020-08029 |
dc.language.iso.es_PE.fl_str_mv |
eng |
language |
eng |
dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.*.fl_str_mv |
Atribución-NoComercial-CompartirIgual 3.0 Estados Unidos de América |
dc.rights.uri.*.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/3.0/us/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-CompartirIgual 3.0 Estados Unidos de América https://creativecommons.org/licenses/by-nc-sa/3.0/us/ |
dc.format.es_PE.fl_str_mv |
application/pdf |
dc.publisher.es_PE.fl_str_mv |
MDPI |
dc.publisher.country.es_PE.fl_str_mv |
CH |
dc.source.es_PE.fl_str_mv |
Universidad Privada del Norte Repositorio Institucional - UPN |
dc.source.none.fl_str_mv |
reponame:UPN-Institucional instname:Universidad Privada del Norte instacron:UPN |
instname_str |
Universidad Privada del Norte |
instacron_str |
UPN |
institution |
UPN |
reponame_str |
UPN-Institucional |
collection |
UPN-Institucional |
bitstream.url.fl_str_mv |
https://repositorio.upn.edu.pe/bitstream/11537/31120/4/Multivariate%20analysis%20for%20the%20classification%20of%20chocolate%20according%20to%20its%20percentage%20of%20Cocoa.pdf.txt https://repositorio.upn.edu.pe/bitstream/11537/31120/5/Multivariate%20analysis%20for%20the%20classification%20of%20chocolate%20according%20to%20its%20percentage%20of%20Cocoa.pdf.jpg https://repositorio.upn.edu.pe/bitstream/11537/31120/1/Multivariate%20analysis%20for%20the%20classification%20of%20chocolate%20according%20to%20its%20percentage%20of%20Cocoa.pdf https://repositorio.upn.edu.pe/bitstream/11537/31120/2/license_rdf https://repositorio.upn.edu.pe/bitstream/11537/31120/3/license.txt |
bitstream.checksum.fl_str_mv |
028e2af0e789d73354b5f132c142e6d8 83433cceb1eeefb29b92f24e189c7e32 4ca489dd162563e09987090a228a1bc9 80294ba9ff4c5b4f07812ee200fbc42f 8a4605be74aa9ea9d79846c1fba20a33 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UPN |
repository.mail.fl_str_mv |
jordan.rivero@upn.edu.pe |
_version_ |
1752944221631807488 |
spelling |
Oblitas, JimyRuiz, Jorge2022-08-09T20:56:34Z2022-08-09T20:56:34Z2020-11-12Oblitas, J., & Ruiz, J. (2020). Multivariate analysis for the classification of chocolate according to its percentage of Cocoa by using Terahertz Time-Domain Spectroscopy (THz-TDS). Proceedings of The 1st International Electronic Conference on Science and Functional Foods. Proceedings of The 1st International Electronic Conference on Food Science and Functional Foods, 70(1). https://doi.org/10.3390/foods_2020-08029https://hdl.handle.net/11537/31120Proceedings of The 1st International Electronic Conference on Food Science and Functional Foodshttps://doi.org/10.3390/foods_2020-08029Terahertz time-domain spectroscopy is a useful technique for determining some physical characteristics of materials, and is based on selective frequency absorption of a broad-spectrum electromagnetic pulse. In order to investigate the potential of this technology to classify cocoa percentages in chocolates, the terahertz spectra (0.5–10 THz) of five chocolate samples (50%, 60%, 70%, 80% and 90% of cocoa) were examined. The acquired data matrices were analyzed with the MATLAB 2019b application, from which the dielectric function was obtained along with the absorbance curves, and were classified by using 24 mathematical classification models, achieving differentiations of around 93% obtained by the Gaussian SVM algorithm model with a kernel scale of 0.35 and a one-against-one multiclass method. It was concluded that the combined processing and classification of images obtained from the terahertz time-domain spectroscopy and the use of machine learning algorithms can be used to successfully classify chocolates with different percentages of cocoa.Revisión por paresCajamarcaapplication/pdfengMDPICHinfo:eu-repo/semantics/openAccessAtribución-NoComercial-CompartirIgual 3.0 Estados Unidos de Américahttps://creativecommons.org/licenses/by-nc-sa/3.0/us/Universidad Privada del NorteRepositorio Institucional - UPNreponame:UPN-Institucionalinstname:Universidad Privada del Norteinstacron:UPNEspectroscopiaCacaoChocolateTecnología alimentariaAnálisis multivariantePorcentaje de cacaohttps://purl.org/pe-repo/ocde/ford#2.11.04Multivariate analysis for the classification of chocolate according to its percentage of Cocoa by using Terahertz Time-Domain Spectroscopy (THz-TDS)info:eu-repo/semantics/conferenceObjectTEXTMultivariate analysis for the classification of chocolate according to its percentage of Cocoa.pdf.txtMultivariate analysis for the classification of chocolate according to its percentage of Cocoa.pdf.txtExtracted texttext/plain18010https://repositorio.upn.edu.pe/bitstream/11537/31120/4/Multivariate%20analysis%20for%20the%20classification%20of%20chocolate%20according%20to%20its%20percentage%20of%20Cocoa.pdf.txt028e2af0e789d73354b5f132c142e6d8MD54THUMBNAILMultivariate analysis for the classification of chocolate according to its percentage of Cocoa.pdf.jpgMultivariate analysis for the classification of chocolate according to its percentage of Cocoa.pdf.jpgGenerated Thumbnailimage/jpeg4378https://repositorio.upn.edu.pe/bitstream/11537/31120/5/Multivariate%20analysis%20for%20the%20classification%20of%20chocolate%20according%20to%20its%20percentage%20of%20Cocoa.pdf.jpg83433cceb1eeefb29b92f24e189c7e32MD55ORIGINALMultivariate analysis for the classification of chocolate according to its percentage of Cocoa.pdfMultivariate analysis for the classification of chocolate according to its percentage of Cocoa.pdfapplication/pdf578976https://repositorio.upn.edu.pe/bitstream/11537/31120/1/Multivariate%20analysis%20for%20the%20classification%20of%20chocolate%20according%20to%20its%20percentage%20of%20Cocoa.pdf4ca489dd162563e09987090a228a1bc9MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81037https://repositorio.upn.edu.pe/bitstream/11537/31120/2/license_rdf80294ba9ff4c5b4f07812ee200fbc42fMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.upn.edu.pe/bitstream/11537/31120/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD5311537/31120oai:repositorio.upn.edu.pe:11537/311202022-08-10 03:03:34.414Repositorio Institucional UPNjordan.rivero@upn.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
score |
13.774068 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).