Peruvian Sign Language Recognition Using Recurrent Neural Networks

Descripción del Articulo

Deaf people generally face difficulties in their daily lives when they try to communicate with hearing people, this is due to the lack of sign language knowledge in the country. Deaf people have to go on their everyday lives in company of a interpreter to be able to communicate, even wanting to go t...

Descripción completa

Detalles Bibliográficos
Autores: Barrientos-Villalta, Geraldine Fiorella, Quiroz, Piero, Ugarte, Willy
Formato: artículo
Fecha de Publicación:2022
Institución:Universidad Peruana de Ciencias Aplicadas
Repositorio:UPC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorioacademico.upc.edu.pe:10757/669597
Enlace del recurso:http://hdl.handle.net/10757/669597
Nivel de acceso:acceso embargado
Materia:Deep learning
Recurrent neural networks
Sign language
id UUPC_fbfa73024895a7ee06625f51b6a19468
oai_identifier_str oai:repositorioacademico.upc.edu.pe:10757/669597
network_acronym_str UUPC
network_name_str UPC-Institucional
repository_id_str 2670
dc.title.es_PE.fl_str_mv Peruvian Sign Language Recognition Using Recurrent Neural Networks
title Peruvian Sign Language Recognition Using Recurrent Neural Networks
spellingShingle Peruvian Sign Language Recognition Using Recurrent Neural Networks
Barrientos-Villalta, Geraldine Fiorella
Deep learning
Recurrent neural networks
Sign language
title_short Peruvian Sign Language Recognition Using Recurrent Neural Networks
title_full Peruvian Sign Language Recognition Using Recurrent Neural Networks
title_fullStr Peruvian Sign Language Recognition Using Recurrent Neural Networks
title_full_unstemmed Peruvian Sign Language Recognition Using Recurrent Neural Networks
title_sort Peruvian Sign Language Recognition Using Recurrent Neural Networks
author Barrientos-Villalta, Geraldine Fiorella
author_facet Barrientos-Villalta, Geraldine Fiorella
Quiroz, Piero
Ugarte, Willy
author_role author
author2 Quiroz, Piero
Ugarte, Willy
author2_role author
author
dc.contributor.author.fl_str_mv Barrientos-Villalta, Geraldine Fiorella
Quiroz, Piero
Ugarte, Willy
dc.subject.es_PE.fl_str_mv Deep learning
Recurrent neural networks
Sign language
topic Deep learning
Recurrent neural networks
Sign language
description Deaf people generally face difficulties in their daily lives when they try to communicate with hearing people, this is due to the lack of sign language knowledge in the country. Deaf people have to go on their everyday lives in company of a interpreter to be able to communicate, even wanting to go to buy bread every morning becomes a challenge for them and being treated in health centers also becomes a challenge, a challenge which should not exist since they have the fundamental right to health. For that reason this paper attempts to present a system for dynamic sign recognition for Peruvian Sign Language and our main goal is to detect which model and processing technique is the most appropriate to solve this problem. So that this system can be used in deaf people everyday life and help them communicate. There have been many projects around the world trying to address this situation. However, each Sign Language is unique in its own way and, therefore, a global and complete solution is not possible. There have also been similar projects in Peru, but all of them share the same flaw of only recognizing static signs. Since sign language is not just the static signs like the alphabet, a solution which addresses also words that can be used in sentences is needed. For this a dynamic recognition is needed, and this is the system that will be presented in this paper.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2023-12-08T01:36:56Z
dc.date.available.none.fl_str_mv 2023-12-08T01:36:56Z
dc.date.issued.fl_str_mv 2022-01-01
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.issn.none.fl_str_mv 18650929
dc.identifier.doi.none.fl_str_mv 10.1007/978-3-031-20319-0_34
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10757/669597
dc.identifier.eissn.none.fl_str_mv 18650937
dc.identifier.journal.es_PE.fl_str_mv Communications in Computer and Information Science
dc.identifier.eid.none.fl_str_mv 2-s2.0-85144224840
dc.identifier.scopusid.none.fl_str_mv SCOPUS_ID:85144224840
dc.identifier.isni.none.fl_str_mv 0000 0001 2196 144X
identifier_str_mv 18650929
10.1007/978-3-031-20319-0_34
18650937
Communications in Computer and Information Science
2-s2.0-85144224840
SCOPUS_ID:85144224840
0000 0001 2196 144X
url http://hdl.handle.net/10757/669597
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.relation.url.es_PE.fl_str_mv https://www.springerprofessional.de/en/peruvian-sign-language-recognition-using-recurrent-neural-networ/23752648
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/embargoedAccess
dc.rights.*.fl_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv embargoedAccess
rights_invalid_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.publisher.es_PE.fl_str_mv Springer Science and Business Media Deutschland GmbH
dc.source.none.fl_str_mv reponame:UPC-Institucional
instname:Universidad Peruana de Ciencias Aplicadas
instacron:UPC
instname_str Universidad Peruana de Ciencias Aplicadas
instacron_str UPC
institution UPC
reponame_str UPC-Institucional
collection UPC-Institucional
dc.source.journaltitle.none.fl_str_mv Communications in Computer and Information Science
dc.source.volume.none.fl_str_mv 1675 CCIS
dc.source.beginpage.none.fl_str_mv 459
dc.source.endpage.none.fl_str_mv 473
bitstream.url.fl_str_mv https://repositorioacademico.upc.edu.pe/bitstream/10757/669597/2/license.txt
https://repositorioacademico.upc.edu.pe/bitstream/10757/669597/1/license_rdf
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
934f4ca17e109e0a05eaeaba504d7ce4
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio académico upc
repository.mail.fl_str_mv upc@openrepository.com
_version_ 1846065954721628160
spelling 9ff05d64bac709f45fdab671e1a097703002057a73ef81911e96c63c6cfde81044d300533fd7e68213307170565ef90452257a500Barrientos-Villalta, Geraldine FiorellaQuiroz, PieroUgarte, Willy2023-12-08T01:36:56Z2023-12-08T01:36:56Z2022-01-011865092910.1007/978-3-031-20319-0_34http://hdl.handle.net/10757/66959718650937Communications in Computer and Information Science2-s2.0-85144224840SCOPUS_ID:851442248400000 0001 2196 144XDeaf people generally face difficulties in their daily lives when they try to communicate with hearing people, this is due to the lack of sign language knowledge in the country. Deaf people have to go on their everyday lives in company of a interpreter to be able to communicate, even wanting to go to buy bread every morning becomes a challenge for them and being treated in health centers also becomes a challenge, a challenge which should not exist since they have the fundamental right to health. For that reason this paper attempts to present a system for dynamic sign recognition for Peruvian Sign Language and our main goal is to detect which model and processing technique is the most appropriate to solve this problem. So that this system can be used in deaf people everyday life and help them communicate. There have been many projects around the world trying to address this situation. However, each Sign Language is unique in its own way and, therefore, a global and complete solution is not possible. There have also been similar projects in Peru, but all of them share the same flaw of only recognizing static signs. Since sign language is not just the static signs like the alphabet, a solution which addresses also words that can be used in sentences is needed. For this a dynamic recognition is needed, and this is the system that will be presented in this paper.engSpringer Science and Business Media Deutschland GmbHhttps://www.springerprofessional.de/en/peruvian-sign-language-recognition-using-recurrent-neural-networ/23752648info:eu-repo/semantics/embargoedAccessAttribution-NonCommercial-ShareAlike 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-sa/4.0/Deep learningRecurrent neural networksSign languagePeruvian Sign Language Recognition Using Recurrent Neural Networksinfo:eu-repo/semantics/articleCommunications in Computer and Information Science1675 CCIS459473reponame:UPC-Institucionalinstname:Universidad Peruana de Ciencias Aplicadasinstacron:UPCLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorioacademico.upc.edu.pe/bitstream/10757/669597/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52falseCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81031https://repositorioacademico.upc.edu.pe/bitstream/10757/669597/1/license_rdf934f4ca17e109e0a05eaeaba504d7ce4MD51false10757/669597oai:repositorioacademico.upc.edu.pe:10757/6695972023-12-08 01:36:57.593Repositorio académico upcupc@openrepository.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.932913
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).