Implementation of Adaptive Traffic Lights to Reduce Traffic Congestion at Intersections through Efficient Strategies for Selective Use of Detectors

Descripción del Articulo

The increase in traffic congestion at urban intersections, particularly in Lima, reflects the need for dynamic solutions in traffic management. This study proposes an adaptive traffic light system designed and simulated in VISSIM, using selective detectors strategically placed in the most congested...

Descripción completa

Detalles Bibliográficos
Autores: Erwin Romero, R., Brayan Torres, Q., Aldo Bravo, L.
Formato: artículo
Fecha de Publicación:2025
Institución:Universidad Peruana de Ciencias Aplicadas
Repositorio:UPC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorioacademico.upc.edu.pe:10757/688481
Enlace del recurso:http://hdl.handle.net/10757/688481
Nivel de acceso:acceso abierto
Materia:Adaptive Traffic Lights
Road Management
Selective Detectors
Traffic Congestion
Traffic Fluidity
https://purl.org/pe-repo/ocde/ford#2.00.00
Descripción
Sumario:The increase in traffic congestion at urban intersections, particularly in Lima, reflects the need for dynamic solutions in traffic management. This study proposes an adaptive traffic light system designed and simulated in VISSIM, using selective detectors strategically placed in the most congested lanes. The methodology included calibration and validation of models based on real data, development of adaptive algorithms in VisVAP, and simulation of scenarios. The results demonstrated an average 20% reduction in delays, a 42% decrease in queue length, and an improvement in the level of service, eliminating the lowest performance categories. This adaptive and efficient approach can be replicated in other cities to optimize urban mobility and reduce costs associated with congestion.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).