Application of the Deep Learning Methodology for the Detection of Cracks in Asphalt Roads
Descripción del Articulo
Insufficient data availability and suboptimal monitoring systems notably reduced the lifespan of flexible pavements. This study addressed these challenges by introducing an innovative tool to enhance control over pavement conditions. Initial field observations identified various types of cracking, f...
| Autores: | , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2024 |
| Institución: | Universidad Peruana de Ciencias Aplicadas |
| Repositorio: | UPC-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorioacademico.upc.edu.pe:10757/676023 |
| Enlace del recurso: | http://hdl.handle.net/10757/676023 |
| Nivel de acceso: | acceso embargado |
| Materia: | Asphalt pavement Crack detection Crack map Deep Learning Monitoring |
| id |
UUPC_ec755a54de9b4c66b5008449e5717dde |
|---|---|
| oai_identifier_str |
oai:repositorioacademico.upc.edu.pe:10757/676023 |
| network_acronym_str |
UUPC |
| network_name_str |
UPC-Institucional |
| repository_id_str |
2670 |
| dc.title.es_PE.fl_str_mv |
Application of the Deep Learning Methodology for the Detection of Cracks in Asphalt Roads |
| title |
Application of the Deep Learning Methodology for the Detection of Cracks in Asphalt Roads |
| spellingShingle |
Application of the Deep Learning Methodology for the Detection of Cracks in Asphalt Roads Neyra, Luis Antonio Elespuru Asphalt pavement Crack detection Crack map Deep Learning Monitoring |
| title_short |
Application of the Deep Learning Methodology for the Detection of Cracks in Asphalt Roads |
| title_full |
Application of the Deep Learning Methodology for the Detection of Cracks in Asphalt Roads |
| title_fullStr |
Application of the Deep Learning Methodology for the Detection of Cracks in Asphalt Roads |
| title_full_unstemmed |
Application of the Deep Learning Methodology for the Detection of Cracks in Asphalt Roads |
| title_sort |
Application of the Deep Learning Methodology for the Detection of Cracks in Asphalt Roads |
| author |
Neyra, Luis Antonio Elespuru |
| author_facet |
Neyra, Luis Antonio Elespuru Tolentino, Marco Antonio Llacza Lizano, Aldo Rafael Bravo |
| author_role |
author |
| author2 |
Tolentino, Marco Antonio Llacza Lizano, Aldo Rafael Bravo |
| author2_role |
author author |
| dc.contributor.author.fl_str_mv |
Neyra, Luis Antonio Elespuru Tolentino, Marco Antonio Llacza Lizano, Aldo Rafael Bravo |
| dc.subject.es_PE.fl_str_mv |
Asphalt pavement Crack detection Crack map Deep Learning Monitoring |
| topic |
Asphalt pavement Crack detection Crack map Deep Learning Monitoring |
| description |
Insufficient data availability and suboptimal monitoring systems notably reduced the lifespan of flexible pavements. This study addressed these challenges by introducing an innovative tool to enhance control over pavement conditions. Initial field observations identified various types of cracking, forming the basis for a comprehensive photogrammetric data survey. This dataset was then employed to train a Deep Learning model for object detection. The results showcased the model’s exceptional reliability in identifying pavement cracks, achieving an impressive accuracy rate of 83.33%. The study emphasizes the practical viability of the proposed tool as an effective means of monitoring roadway conditions. By overcoming data limitations and monitoring deficiencies, this research not only contributes to the progression of pavement maintenance practices but also establishes a solid foundation for creating a maintenance and repair priority map. This serves as a valuable tool for targeting interventions, enhancing the longevity and overall performance of flexible pavements, and represents a significant advancement in sustainable infrastructure management. |
| publishDate |
2024 |
| dc.date.accessioned.none.fl_str_mv |
2024-10-06T11:15:48Z |
| dc.date.available.none.fl_str_mv |
2024-10-06T11:15:48Z |
| dc.date.issued.fl_str_mv |
2024-01-01 |
| dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| dc.identifier.issn.none.fl_str_mv |
21903018 |
| dc.identifier.doi.none.fl_str_mv |
10.1007/978-3-031-66961-3_18 |
| dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10757/676023 |
| dc.identifier.eissn.none.fl_str_mv |
21903026 |
| dc.identifier.journal.es_PE.fl_str_mv |
Smart Innovation, Systems and Technologies |
| dc.identifier.eid.none.fl_str_mv |
2-s2.0-85202608754 |
| dc.identifier.scopusid.none.fl_str_mv |
SCOPUS_ID:85202608754 |
| identifier_str_mv |
21903018 10.1007/978-3-031-66961-3_18 21903026 Smart Innovation, Systems and Technologies 2-s2.0-85202608754 SCOPUS_ID:85202608754 |
| url |
http://hdl.handle.net/10757/676023 |
| dc.language.iso.es_PE.fl_str_mv |
eng |
| language |
eng |
| dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
| eu_rights_str_mv |
embargoedAccess |
| dc.format.es_PE.fl_str_mv |
application/html |
| dc.publisher.es_PE.fl_str_mv |
Springer Science and Business Media Deutschland GmbH |
| dc.source.none.fl_str_mv |
reponame:UPC-Institucional instname:Universidad Peruana de Ciencias Aplicadas instacron:UPC |
| instname_str |
Universidad Peruana de Ciencias Aplicadas |
| instacron_str |
UPC |
| institution |
UPC |
| reponame_str |
UPC-Institucional |
| collection |
UPC-Institucional |
| dc.source.journaltitle.none.fl_str_mv |
Smart Innovation, Systems and Technologies |
| dc.source.volume.none.fl_str_mv |
402 SIST |
| dc.source.beginpage.none.fl_str_mv |
195 |
| dc.source.endpage.none.fl_str_mv |
205 |
| bitstream.url.fl_str_mv |
https://repositorioacademico.upc.edu.pe/bitstream/10757/676023/1/license.txt |
| bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
| repository.name.fl_str_mv |
Repositorio académico upc |
| repository.mail.fl_str_mv |
upc@openrepository.com |
| _version_ |
1846066052387045376 |
| spelling |
b9027b82bc2b5da301145ad8fd6cb693300209981f722df398941c8a0cfd03271d1300c9c7f5cf003c364c5921b635d37545f2Neyra, Luis Antonio ElespuruTolentino, Marco Antonio LlaczaLizano, Aldo Rafael Bravo2024-10-06T11:15:48Z2024-10-06T11:15:48Z2024-01-012190301810.1007/978-3-031-66961-3_18http://hdl.handle.net/10757/67602321903026Smart Innovation, Systems and Technologies2-s2.0-85202608754SCOPUS_ID:85202608754Insufficient data availability and suboptimal monitoring systems notably reduced the lifespan of flexible pavements. This study addressed these challenges by introducing an innovative tool to enhance control over pavement conditions. Initial field observations identified various types of cracking, forming the basis for a comprehensive photogrammetric data survey. This dataset was then employed to train a Deep Learning model for object detection. The results showcased the model’s exceptional reliability in identifying pavement cracks, achieving an impressive accuracy rate of 83.33%. The study emphasizes the practical viability of the proposed tool as an effective means of monitoring roadway conditions. By overcoming data limitations and monitoring deficiencies, this research not only contributes to the progression of pavement maintenance practices but also establishes a solid foundation for creating a maintenance and repair priority map. This serves as a valuable tool for targeting interventions, enhancing the longevity and overall performance of flexible pavements, and represents a significant advancement in sustainable infrastructure management.application/htmlengSpringer Science and Business Media Deutschland GmbHinfo:eu-repo/semantics/embargoedAccessAsphalt pavementCrack detectionCrack mapDeep LearningMonitoringApplication of the Deep Learning Methodology for the Detection of Cracks in Asphalt Roadsinfo:eu-repo/semantics/articleSmart Innovation, Systems and Technologies402 SIST195205reponame:UPC-Institucionalinstname:Universidad Peruana de Ciencias Aplicadasinstacron:UPCLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorioacademico.upc.edu.pe/bitstream/10757/676023/1/license.txt8a4605be74aa9ea9d79846c1fba20a33MD51false10757/676023oai:repositorioacademico.upc.edu.pe:10757/6760232024-10-06 11:15:50.179Repositorio académico upcupc@openrepository.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
| score |
13.905282 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).