Application of the Deep Learning Methodology for the Detection of Cracks in Asphalt Roads

Descripción del Articulo

Insufficient data availability and suboptimal monitoring systems notably reduced the lifespan of flexible pavements. This study addressed these challenges by introducing an innovative tool to enhance control over pavement conditions. Initial field observations identified various types of cracking, f...

Descripción completa

Detalles Bibliográficos
Autores: Neyra, Luis Antonio Elespuru, Tolentino, Marco Antonio Llacza, Lizano, Aldo Rafael Bravo
Formato: artículo
Fecha de Publicación:2024
Institución:Universidad Peruana de Ciencias Aplicadas
Repositorio:UPC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorioacademico.upc.edu.pe:10757/676023
Enlace del recurso:http://hdl.handle.net/10757/676023
Nivel de acceso:acceso embargado
Materia:Asphalt pavement
Crack detection
Crack map
Deep Learning
Monitoring
id UUPC_ec755a54de9b4c66b5008449e5717dde
oai_identifier_str oai:repositorioacademico.upc.edu.pe:10757/676023
network_acronym_str UUPC
network_name_str UPC-Institucional
repository_id_str 2670
dc.title.es_PE.fl_str_mv Application of the Deep Learning Methodology for the Detection of Cracks in Asphalt Roads
title Application of the Deep Learning Methodology for the Detection of Cracks in Asphalt Roads
spellingShingle Application of the Deep Learning Methodology for the Detection of Cracks in Asphalt Roads
Neyra, Luis Antonio Elespuru
Asphalt pavement
Crack detection
Crack map
Deep Learning
Monitoring
title_short Application of the Deep Learning Methodology for the Detection of Cracks in Asphalt Roads
title_full Application of the Deep Learning Methodology for the Detection of Cracks in Asphalt Roads
title_fullStr Application of the Deep Learning Methodology for the Detection of Cracks in Asphalt Roads
title_full_unstemmed Application of the Deep Learning Methodology for the Detection of Cracks in Asphalt Roads
title_sort Application of the Deep Learning Methodology for the Detection of Cracks in Asphalt Roads
author Neyra, Luis Antonio Elespuru
author_facet Neyra, Luis Antonio Elespuru
Tolentino, Marco Antonio Llacza
Lizano, Aldo Rafael Bravo
author_role author
author2 Tolentino, Marco Antonio Llacza
Lizano, Aldo Rafael Bravo
author2_role author
author
dc.contributor.author.fl_str_mv Neyra, Luis Antonio Elespuru
Tolentino, Marco Antonio Llacza
Lizano, Aldo Rafael Bravo
dc.subject.es_PE.fl_str_mv Asphalt pavement
Crack detection
Crack map
Deep Learning
Monitoring
topic Asphalt pavement
Crack detection
Crack map
Deep Learning
Monitoring
description Insufficient data availability and suboptimal monitoring systems notably reduced the lifespan of flexible pavements. This study addressed these challenges by introducing an innovative tool to enhance control over pavement conditions. Initial field observations identified various types of cracking, forming the basis for a comprehensive photogrammetric data survey. This dataset was then employed to train a Deep Learning model for object detection. The results showcased the model’s exceptional reliability in identifying pavement cracks, achieving an impressive accuracy rate of 83.33%. The study emphasizes the practical viability of the proposed tool as an effective means of monitoring roadway conditions. By overcoming data limitations and monitoring deficiencies, this research not only contributes to the progression of pavement maintenance practices but also establishes a solid foundation for creating a maintenance and repair priority map. This serves as a valuable tool for targeting interventions, enhancing the longevity and overall performance of flexible pavements, and represents a significant advancement in sustainable infrastructure management.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-10-06T11:15:48Z
dc.date.available.none.fl_str_mv 2024-10-06T11:15:48Z
dc.date.issued.fl_str_mv 2024-01-01
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.issn.none.fl_str_mv 21903018
dc.identifier.doi.none.fl_str_mv 10.1007/978-3-031-66961-3_18
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10757/676023
dc.identifier.eissn.none.fl_str_mv 21903026
dc.identifier.journal.es_PE.fl_str_mv Smart Innovation, Systems and Technologies
dc.identifier.eid.none.fl_str_mv 2-s2.0-85202608754
dc.identifier.scopusid.none.fl_str_mv SCOPUS_ID:85202608754
identifier_str_mv 21903018
10.1007/978-3-031-66961-3_18
21903026
Smart Innovation, Systems and Technologies
2-s2.0-85202608754
SCOPUS_ID:85202608754
url http://hdl.handle.net/10757/676023
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/embargoedAccess
eu_rights_str_mv embargoedAccess
dc.format.es_PE.fl_str_mv application/html
dc.publisher.es_PE.fl_str_mv Springer Science and Business Media Deutschland GmbH
dc.source.none.fl_str_mv reponame:UPC-Institucional
instname:Universidad Peruana de Ciencias Aplicadas
instacron:UPC
instname_str Universidad Peruana de Ciencias Aplicadas
instacron_str UPC
institution UPC
reponame_str UPC-Institucional
collection UPC-Institucional
dc.source.journaltitle.none.fl_str_mv Smart Innovation, Systems and Technologies
dc.source.volume.none.fl_str_mv 402 SIST
dc.source.beginpage.none.fl_str_mv 195
dc.source.endpage.none.fl_str_mv 205
bitstream.url.fl_str_mv https://repositorioacademico.upc.edu.pe/bitstream/10757/676023/1/license.txt
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio académico upc
repository.mail.fl_str_mv upc@openrepository.com
_version_ 1846066052387045376
spelling b9027b82bc2b5da301145ad8fd6cb693300209981f722df398941c8a0cfd03271d1300c9c7f5cf003c364c5921b635d37545f2Neyra, Luis Antonio ElespuruTolentino, Marco Antonio LlaczaLizano, Aldo Rafael Bravo2024-10-06T11:15:48Z2024-10-06T11:15:48Z2024-01-012190301810.1007/978-3-031-66961-3_18http://hdl.handle.net/10757/67602321903026Smart Innovation, Systems and Technologies2-s2.0-85202608754SCOPUS_ID:85202608754Insufficient data availability and suboptimal monitoring systems notably reduced the lifespan of flexible pavements. This study addressed these challenges by introducing an innovative tool to enhance control over pavement conditions. Initial field observations identified various types of cracking, forming the basis for a comprehensive photogrammetric data survey. This dataset was then employed to train a Deep Learning model for object detection. The results showcased the model’s exceptional reliability in identifying pavement cracks, achieving an impressive accuracy rate of 83.33%. The study emphasizes the practical viability of the proposed tool as an effective means of monitoring roadway conditions. By overcoming data limitations and monitoring deficiencies, this research not only contributes to the progression of pavement maintenance practices but also establishes a solid foundation for creating a maintenance and repair priority map. This serves as a valuable tool for targeting interventions, enhancing the longevity and overall performance of flexible pavements, and represents a significant advancement in sustainable infrastructure management.application/htmlengSpringer Science and Business Media Deutschland GmbHinfo:eu-repo/semantics/embargoedAccessAsphalt pavementCrack detectionCrack mapDeep LearningMonitoringApplication of the Deep Learning Methodology for the Detection of Cracks in Asphalt Roadsinfo:eu-repo/semantics/articleSmart Innovation, Systems and Technologies402 SIST195205reponame:UPC-Institucionalinstname:Universidad Peruana de Ciencias Aplicadasinstacron:UPCLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorioacademico.upc.edu.pe/bitstream/10757/676023/1/license.txt8a4605be74aa9ea9d79846c1fba20a33MD51false10757/676023oai:repositorioacademico.upc.edu.pe:10757/6760232024-10-06 11:15:50.179Repositorio académico upcupc@openrepository.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.905282
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).