Método de estabilidad para el dimensionamiento de tajeos obtenido mediante el algoritmo Gradient Boosting Machine considerando la incorporación de los esfuerzos activos en minería subterránea

Descripción del Articulo

En las últimas cuatro décadas, el método gráfico de estabilidad de Mathews ha constituido el abanico de herramientas indispensables para el dimensionamiento de tajeos; caracterizándose por su eficiencia en costos, ahorro de tiempo y esfuerzo. Asimismo, el aporte de diversos autores por optimizar su...

Descripción completa

Detalles Bibliográficos
Autor: Camacho Cosio, Hernán
Formato: tesis de grado
Fecha de Publicación:2020
Institución:Universidad Peruana de Ciencias Aplicadas
Repositorio:UPC-Institucional
Lenguaje:español
OAI Identifier:oai:repositorioacademico.upc.edu.pe:10757/656716
Enlace del recurso:http://hdl.handle.net/10757/656716
Nivel de acceso:acceso abierto
Materia:Método gráfico de estabilidad
Gradient Boosting Machine
Esfuerzos activos
Graphical stability method
Active efforts
http://purl.org/pe-repo/ocde/ford#2.00.00
https://purl.org/pe-repo/ocde/ford#1.05.02
Descripción
Sumario:En las últimas cuatro décadas, el método gráfico de estabilidad de Mathews ha constituido el abanico de herramientas indispensables para el dimensionamiento de tajeos; caracterizándose por su eficiencia en costos, ahorro de tiempo y esfuerzo. Asimismo, el aporte de diversos autores por optimizar su rendimiento ha permitido desplegar una serie de criterios que han permitido abordar cada vez más escenarios. No obstante, con la diversificación de la minería en diferentes contextos geológicos y la necesidad trabajar a profundidades más altas se ha mostrado que el método gráfico de estabilidad ha desestimado escenarios con presencia de agua y distintos regímenes de confinamiento. Es por este motivo, que la presente investigación busca incorporar dichos escenarios por medio del algoritmo Gradient Boosting Machine. Para dicho fin, se simuló escenarios con diversos niveles de presión de agua y se consideró el grado de confinamiento alrededor de las excavaciones. El modelo generado se basó en el criterio de la clasificación binaria, siento las clases predichas, “estable” e “inestable”; con lo que se obtuvo un valor AUC de 0.88, lo que demostró una excelente capacidad predictiva del modelo GBM. Asimismo, se demostró las ventajas frente al método tradicional, puesto que se añade una componente de rigurosidad y de generalización. Finalmente, se evidencia el logro de un método de estabilidad que incorpora los esfuerzos activos y que ostenta un adecuado rendimiento predictivo.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).