Structural design of confined masonry buildings using artificial neural networks

Descripción del Articulo

El texto completo de este trabajo no está disponible en el Repositorio Académico UPC por restricciones de la casa editorial donde ha sido publicado.
Detalles Bibliográficos
Autores: Sicha Pillaca, Juan Carlos, Molina Ramirez, Alexander, Vasquez, Victor Arana
Formato: artículo
Fecha de Publicación:2020
Institución:Universidad Peruana de Ciencias Aplicadas
Repositorio:UPC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorioacademico.upc.edu.pe:10757/656414
Enlace del recurso:http://hdl.handle.net/10757/656414
Nivel de acceso:acceso embargado
Materia:artificial intelligence
artificial neural networks
confined masonry
structural design
id UUPC_c2dfb6407a0e4a652a548a2ab0250a39
oai_identifier_str oai:repositorioacademico.upc.edu.pe:10757/656414
network_acronym_str UUPC
network_name_str UPC-Institucional
repository_id_str 2670
dc.title.en_US.fl_str_mv Structural design of confined masonry buildings using artificial neural networks
title Structural design of confined masonry buildings using artificial neural networks
spellingShingle Structural design of confined masonry buildings using artificial neural networks
Sicha Pillaca, Juan Carlos
artificial intelligence
artificial neural networks
confined masonry
structural design
title_short Structural design of confined masonry buildings using artificial neural networks
title_full Structural design of confined masonry buildings using artificial neural networks
title_fullStr Structural design of confined masonry buildings using artificial neural networks
title_full_unstemmed Structural design of confined masonry buildings using artificial neural networks
title_sort Structural design of confined masonry buildings using artificial neural networks
author Sicha Pillaca, Juan Carlos
author_facet Sicha Pillaca, Juan Carlos
Molina Ramirez, Alexander
Vasquez, Victor Arana
author_role author
author2 Molina Ramirez, Alexander
Vasquez, Victor Arana
author2_role author
author
dc.contributor.author.fl_str_mv Sicha Pillaca, Juan Carlos
Molina Ramirez, Alexander
Vasquez, Victor Arana
dc.subject.en_US.fl_str_mv artificial intelligence
artificial neural networks
confined masonry
structural design
topic artificial intelligence
artificial neural networks
confined masonry
structural design
description El texto completo de este trabajo no está disponible en el Repositorio Académico UPC por restricciones de la casa editorial donde ha sido publicado.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2021-06-08T13:21:47Z
dc.date.available.none.fl_str_mv 2021-06-08T13:21:47Z
dc.date.issued.fl_str_mv 2020-09-30
dc.type.en_US.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.doi.none.fl_str_mv 10.1109/CONIITI51147.2020.9240404
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10757/656414
dc.identifier.journal.en_US.fl_str_mv 2020 Congreso Internacional de Innovacion y Tendencias en Ingenieria, CONIITI 2020 - Conference Proceedings
dc.identifier.eid.none.fl_str_mv 2-s2.0-85096593247
dc.identifier.scopusid.none.fl_str_mv SCOPUS_ID:85096593247
dc.identifier.isni.none.fl_str_mv 0000 0001 2196 144X
identifier_str_mv 10.1109/CONIITI51147.2020.9240404
2020 Congreso Internacional de Innovacion y Tendencias en Ingenieria, CONIITI 2020 - Conference Proceedings
2-s2.0-85096593247
SCOPUS_ID:85096593247
0000 0001 2196 144X
url http://hdl.handle.net/10757/656414
dc.language.iso.en_US.fl_str_mv eng
language eng
dc.relation.url.en_US.fl_str_mv https://ieeexplore.ieee.org/document/9240404
dc.rights.en_US.fl_str_mv info:eu-repo/semantics/embargoedAccess
eu_rights_str_mv embargoedAccess
dc.format.en_US.fl_str_mv application/html
dc.publisher.en_US.fl_str_mv Institute of Electrical and Electronics Engineers Inc.
dc.source.none.fl_str_mv reponame:UPC-Institucional
instname:Universidad Peruana de Ciencias Aplicadas
instacron:UPC
instname_str Universidad Peruana de Ciencias Aplicadas
instacron_str UPC
institution UPC
reponame_str UPC-Institucional
collection UPC-Institucional
dc.source.journaltitle.none.fl_str_mv 2020 Congreso Internacional de Innovacion y Tendencias en Ingenieria, CONIITI 2020 - Conference Proceedings
bitstream.url.fl_str_mv https://repositorioacademico.upc.edu.pe/bitstream/10757/656414/1/license.txt
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio académico upc
repository.mail.fl_str_mv upc@openrepository.com
_version_ 1846065763498065920
spelling d39f8d66a49e2d6df3070f034afeef69600http://orcid.org/0000-0003-1533-889124d7984ae4d0feed5cfb13cf1b015143600http://orcid.org/0000-0001-7901-6491cc06b338c85d9bf164fcce24b7e778b1Sicha Pillaca, Juan CarlosMolina Ramirez, AlexanderVasquez, Victor Arana2021-06-08T13:21:47Z2021-06-08T13:21:47Z2020-09-3010.1109/CONIITI51147.2020.9240404http://hdl.handle.net/10757/6564142020 Congreso Internacional de Innovacion y Tendencias en Ingenieria, CONIITI 2020 - Conference Proceedings2-s2.0-85096593247SCOPUS_ID:850965932470000 0001 2196 144XEl texto completo de este trabajo no está disponible en el Repositorio Académico UPC por restricciones de la casa editorial donde ha sido publicado.The aim of this article is to use artificial neural networks (ANN) to perform the structural design of confined masonry buildings. ANN is easy to operate and allows to reduce the time and cost of seismic designs. To generate the artificial neural network, training models (traditional confined masonry designs) are used to identify the input and output parameters. From this, the final architecture and activation functions are defined for each layer of the ANN. Finally, ANN training is carried out using the backpropagation algorithm to obtain the matrix of weights and thresholds that allow the network to operate and provide preliminary structural designs with a 10% margin of error, with respect to the traditional design, in the dimensions and reinforcements of the structural elements.application/htmlengInstitute of Electrical and Electronics Engineers Inc.https://ieeexplore.ieee.org/document/9240404info:eu-repo/semantics/embargoedAccessartificial intelligenceartificial neural networksconfined masonrystructural designStructural design of confined masonry buildings using artificial neural networksinfo:eu-repo/semantics/article2020 Congreso Internacional de Innovacion y Tendencias en Ingenieria, CONIITI 2020 - Conference Proceedingsreponame:UPC-Institucionalinstname:Universidad Peruana de Ciencias Aplicadasinstacron:UPCLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorioacademico.upc.edu.pe/bitstream/10757/656414/1/license.txt8a4605be74aa9ea9d79846c1fba20a33MD51false10757/656414oai:repositorioacademico.upc.edu.pe:10757/6564142021-06-08 13:21:48.442Repositorio académico upcupc@openrepository.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.897231
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).