A Machine Learning-Based Predictive Model for the Management of Incidents in Small and Medium-Sized Enterprises in Peru
Descripción del Articulo
In the context of IT incident management, the prioritization and automation of tickets can be a challenge for companies that lack advanced technologies. However, these difficulties can be overcome today by applying machine learning algorithms and techniques that use historical data to train predicti...
Autores: | , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2024 |
Institución: | Universidad Peruana de Ciencias Aplicadas |
Repositorio: | UPC-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorioacademico.upc.edu.pe:10757/676293 |
Enlace del recurso: | http://hdl.handle.net/10757/676293 |
Nivel de acceso: | acceso embargado |
Materia: | algorithm Classification |
id |
UUPC_b56ff8d73ce9909f6104cbd7ac8ba682 |
---|---|
oai_identifier_str |
oai:repositorioacademico.upc.edu.pe:10757/676293 |
network_acronym_str |
UUPC |
network_name_str |
UPC-Institucional |
repository_id_str |
2670 |
dc.title.es_PE.fl_str_mv |
A Machine Learning-Based Predictive Model for the Management of Incidents in Small and Medium-Sized Enterprises in Peru |
title |
A Machine Learning-Based Predictive Model for the Management of Incidents in Small and Medium-Sized Enterprises in Peru |
spellingShingle |
A Machine Learning-Based Predictive Model for the Management of Incidents in Small and Medium-Sized Enterprises in Peru Cribillero, Luis F. algorithm Classification |
title_short |
A Machine Learning-Based Predictive Model for the Management of Incidents in Small and Medium-Sized Enterprises in Peru |
title_full |
A Machine Learning-Based Predictive Model for the Management of Incidents in Small and Medium-Sized Enterprises in Peru |
title_fullStr |
A Machine Learning-Based Predictive Model for the Management of Incidents in Small and Medium-Sized Enterprises in Peru |
title_full_unstemmed |
A Machine Learning-Based Predictive Model for the Management of Incidents in Small and Medium-Sized Enterprises in Peru |
title_sort |
A Machine Learning-Based Predictive Model for the Management of Incidents in Small and Medium-Sized Enterprises in Peru |
author |
Cribillero, Luis F. |
author_facet |
Cribillero, Luis F. Quispe, Jeyson I. Castañeda, Pedro |
author_role |
author |
author2 |
Quispe, Jeyson I. Castañeda, Pedro |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Cribillero, Luis F. Quispe, Jeyson I. Castañeda, Pedro |
dc.subject.es_PE.fl_str_mv |
algorithm Classification |
topic |
algorithm Classification |
description |
In the context of IT incident management, the prioritization and automation of tickets can be a challenge for companies that lack advanced technologies. However, these difficulties can be overcome today by applying machine learning algorithms and techniques that use historical data to train predictive models, which allows for more efficient and effective IT incident management. The article proposes the implementation of a predictive model that uses machine learning to prioritize IT incidents in these companies. The goal of this proposal is to allow small and medium-sized enterprises to prioritize their incidents automatically, using a model that has been previously trained with a supervised multi-label classification algorithm technique to achieve high accuracy. Experimental results show that the Mean Absolute Error (MAE) is 2.79 and a Mean Squared Error (MSE) of 8.21, using the metrics provided by the scikit-learn library. Additionally, the entropy loss approaches a value of 0, suggesting a precise ability of the model to predict real values. Additionally, an average accuracy level of 93.74% was achieved. |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-10-31T07:09:20Z |
dc.date.available.none.fl_str_mv |
2024-10-31T07:09:20Z |
dc.date.issued.fl_str_mv |
2024-03-22 |
dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
dc.identifier.doi.none.fl_str_mv |
10.1145/3654823.3654913 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10757/676293 |
dc.identifier.journal.es_PE.fl_str_mv |
ACM International Conference Proceeding Series |
dc.identifier.eid.none.fl_str_mv |
2-s2.0-85203822512 |
dc.identifier.scopusid.none.fl_str_mv |
SCOPUS_ID:85203822512 |
dc.identifier.isni.none.fl_str_mv |
0000 0001 2196 144X |
identifier_str_mv |
10.1145/3654823.3654913 ACM International Conference Proceeding Series 2-s2.0-85203822512 SCOPUS_ID:85203822512 0000 0001 2196 144X |
url |
http://hdl.handle.net/10757/676293 |
dc.language.iso.es_PE.fl_str_mv |
eng |
language |
eng |
dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
eu_rights_str_mv |
embargoedAccess |
dc.format.es_PE.fl_str_mv |
application/html |
dc.publisher.es_PE.fl_str_mv |
Association for Computing Machinery |
dc.source.es_PE.fl_str_mv |
Repositorio Academico - UPC Universidad Peruana de Ciencias Aplicadas (UPC) |
dc.source.none.fl_str_mv |
reponame:UPC-Institucional instname:Universidad Peruana de Ciencias Aplicadas instacron:UPC |
instname_str |
Universidad Peruana de Ciencias Aplicadas |
instacron_str |
UPC |
institution |
UPC |
reponame_str |
UPC-Institucional |
collection |
UPC-Institucional |
dc.source.journaltitle.none.fl_str_mv |
ACM International Conference Proceeding Series |
dc.source.beginpage.none.fl_str_mv |
456 |
dc.source.endpage.none.fl_str_mv |
459 |
bitstream.url.fl_str_mv |
https://repositorioacademico.upc.edu.pe/bitstream/10757/676293/1/license.txt |
bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio académico upc |
repository.mail.fl_str_mv |
upc@openrepository.com |
_version_ |
1845545861015142400 |
spelling |
42e4ca85567a9cee59efdabbeae52bec30047ac98cd039d924ce90181855733f05e300db9010f8c2406b988b289cb0a11e9e35500Cribillero, Luis F.Quispe, Jeyson I.Castañeda, Pedro2024-10-31T07:09:20Z2024-10-31T07:09:20Z2024-03-2210.1145/3654823.3654913http://hdl.handle.net/10757/676293ACM International Conference Proceeding Series2-s2.0-85203822512SCOPUS_ID:852038225120000 0001 2196 144XIn the context of IT incident management, the prioritization and automation of tickets can be a challenge for companies that lack advanced technologies. However, these difficulties can be overcome today by applying machine learning algorithms and techniques that use historical data to train predictive models, which allows for more efficient and effective IT incident management. The article proposes the implementation of a predictive model that uses machine learning to prioritize IT incidents in these companies. The goal of this proposal is to allow small and medium-sized enterprises to prioritize their incidents automatically, using a model that has been previously trained with a supervised multi-label classification algorithm technique to achieve high accuracy. Experimental results show that the Mean Absolute Error (MAE) is 2.79 and a Mean Squared Error (MSE) of 8.21, using the metrics provided by the scikit-learn library. Additionally, the entropy loss approaches a value of 0, suggesting a precise ability of the model to predict real values. Additionally, an average accuracy level of 93.74% was achieved.Revisión por paresapplication/htmlengAssociation for Computing Machineryinfo:eu-repo/semantics/embargoedAccessRepositorio Academico - UPCUniversidad Peruana de Ciencias Aplicadas (UPC)ACM International Conference Proceeding Series456459reponame:UPC-Institucionalinstname:Universidad Peruana de Ciencias Aplicadasinstacron:UPCalgorithmClassificationA Machine Learning-Based Predictive Model for the Management of Incidents in Small and Medium-Sized Enterprises in Peruinfo:eu-repo/semantics/articleLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorioacademico.upc.edu.pe/bitstream/10757/676293/1/license.txt8a4605be74aa9ea9d79846c1fba20a33MD51false10757/676293oai:repositorioacademico.upc.edu.pe:10757/6762932024-10-31 07:09:22.62Repositorio académico upcupc@openrepository.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
score |
13.802008 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).