A Machine Learning-Based Predictive Model for the Management of Incidents in Small and Medium-Sized Enterprises in Peru

Descripción del Articulo

In the context of IT incident management, the prioritization and automation of tickets can be a challenge for companies that lack advanced technologies. However, these difficulties can be overcome today by applying machine learning algorithms and techniques that use historical data to train predicti...

Descripción completa

Detalles Bibliográficos
Autores: Cribillero, Luis F., Quispe, Jeyson I., Castañeda, Pedro
Formato: artículo
Fecha de Publicación:2024
Institución:Universidad Peruana de Ciencias Aplicadas
Repositorio:UPC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorioacademico.upc.edu.pe:10757/676293
Enlace del recurso:http://hdl.handle.net/10757/676293
Nivel de acceso:acceso embargado
Materia:algorithm
Classification
id UUPC_b56ff8d73ce9909f6104cbd7ac8ba682
oai_identifier_str oai:repositorioacademico.upc.edu.pe:10757/676293
network_acronym_str UUPC
network_name_str UPC-Institucional
repository_id_str 2670
dc.title.es_PE.fl_str_mv A Machine Learning-Based Predictive Model for the Management of Incidents in Small and Medium-Sized Enterprises in Peru
title A Machine Learning-Based Predictive Model for the Management of Incidents in Small and Medium-Sized Enterprises in Peru
spellingShingle A Machine Learning-Based Predictive Model for the Management of Incidents in Small and Medium-Sized Enterprises in Peru
Cribillero, Luis F.
algorithm
Classification
title_short A Machine Learning-Based Predictive Model for the Management of Incidents in Small and Medium-Sized Enterprises in Peru
title_full A Machine Learning-Based Predictive Model for the Management of Incidents in Small and Medium-Sized Enterprises in Peru
title_fullStr A Machine Learning-Based Predictive Model for the Management of Incidents in Small and Medium-Sized Enterprises in Peru
title_full_unstemmed A Machine Learning-Based Predictive Model for the Management of Incidents in Small and Medium-Sized Enterprises in Peru
title_sort A Machine Learning-Based Predictive Model for the Management of Incidents in Small and Medium-Sized Enterprises in Peru
author Cribillero, Luis F.
author_facet Cribillero, Luis F.
Quispe, Jeyson I.
Castañeda, Pedro
author_role author
author2 Quispe, Jeyson I.
Castañeda, Pedro
author2_role author
author
dc.contributor.author.fl_str_mv Cribillero, Luis F.
Quispe, Jeyson I.
Castañeda, Pedro
dc.subject.es_PE.fl_str_mv algorithm
Classification
topic algorithm
Classification
description In the context of IT incident management, the prioritization and automation of tickets can be a challenge for companies that lack advanced technologies. However, these difficulties can be overcome today by applying machine learning algorithms and techniques that use historical data to train predictive models, which allows for more efficient and effective IT incident management. The article proposes the implementation of a predictive model that uses machine learning to prioritize IT incidents in these companies. The goal of this proposal is to allow small and medium-sized enterprises to prioritize their incidents automatically, using a model that has been previously trained with a supervised multi-label classification algorithm technique to achieve high accuracy. Experimental results show that the Mean Absolute Error (MAE) is 2.79 and a Mean Squared Error (MSE) of 8.21, using the metrics provided by the scikit-learn library. Additionally, the entropy loss approaches a value of 0, suggesting a precise ability of the model to predict real values. Additionally, an average accuracy level of 93.74% was achieved.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-10-31T07:09:20Z
dc.date.available.none.fl_str_mv 2024-10-31T07:09:20Z
dc.date.issued.fl_str_mv 2024-03-22
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.doi.none.fl_str_mv 10.1145/3654823.3654913
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10757/676293
dc.identifier.journal.es_PE.fl_str_mv ACM International Conference Proceeding Series
dc.identifier.eid.none.fl_str_mv 2-s2.0-85203822512
dc.identifier.scopusid.none.fl_str_mv SCOPUS_ID:85203822512
dc.identifier.isni.none.fl_str_mv 0000 0001 2196 144X
identifier_str_mv 10.1145/3654823.3654913
ACM International Conference Proceeding Series
2-s2.0-85203822512
SCOPUS_ID:85203822512
0000 0001 2196 144X
url http://hdl.handle.net/10757/676293
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/embargoedAccess
eu_rights_str_mv embargoedAccess
dc.format.es_PE.fl_str_mv application/html
dc.publisher.es_PE.fl_str_mv Association for Computing Machinery
dc.source.es_PE.fl_str_mv Repositorio Academico - UPC
Universidad Peruana de Ciencias Aplicadas (UPC)
dc.source.none.fl_str_mv reponame:UPC-Institucional
instname:Universidad Peruana de Ciencias Aplicadas
instacron:UPC
instname_str Universidad Peruana de Ciencias Aplicadas
instacron_str UPC
institution UPC
reponame_str UPC-Institucional
collection UPC-Institucional
dc.source.journaltitle.none.fl_str_mv ACM International Conference Proceeding Series
dc.source.beginpage.none.fl_str_mv 456
dc.source.endpage.none.fl_str_mv 459
bitstream.url.fl_str_mv https://repositorioacademico.upc.edu.pe/bitstream/10757/676293/1/license.txt
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio académico upc
repository.mail.fl_str_mv upc@openrepository.com
_version_ 1845545861015142400
spelling 42e4ca85567a9cee59efdabbeae52bec30047ac98cd039d924ce90181855733f05e300db9010f8c2406b988b289cb0a11e9e35500Cribillero, Luis F.Quispe, Jeyson I.Castañeda, Pedro2024-10-31T07:09:20Z2024-10-31T07:09:20Z2024-03-2210.1145/3654823.3654913http://hdl.handle.net/10757/676293ACM International Conference Proceeding Series2-s2.0-85203822512SCOPUS_ID:852038225120000 0001 2196 144XIn the context of IT incident management, the prioritization and automation of tickets can be a challenge for companies that lack advanced technologies. However, these difficulties can be overcome today by applying machine learning algorithms and techniques that use historical data to train predictive models, which allows for more efficient and effective IT incident management. The article proposes the implementation of a predictive model that uses machine learning to prioritize IT incidents in these companies. The goal of this proposal is to allow small and medium-sized enterprises to prioritize their incidents automatically, using a model that has been previously trained with a supervised multi-label classification algorithm technique to achieve high accuracy. Experimental results show that the Mean Absolute Error (MAE) is 2.79 and a Mean Squared Error (MSE) of 8.21, using the metrics provided by the scikit-learn library. Additionally, the entropy loss approaches a value of 0, suggesting a precise ability of the model to predict real values. Additionally, an average accuracy level of 93.74% was achieved.Revisión por paresapplication/htmlengAssociation for Computing Machineryinfo:eu-repo/semantics/embargoedAccessRepositorio Academico - UPCUniversidad Peruana de Ciencias Aplicadas (UPC)ACM International Conference Proceeding Series456459reponame:UPC-Institucionalinstname:Universidad Peruana de Ciencias Aplicadasinstacron:UPCalgorithmClassificationA Machine Learning-Based Predictive Model for the Management of Incidents in Small and Medium-Sized Enterprises in Peruinfo:eu-repo/semantics/articleLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorioacademico.upc.edu.pe/bitstream/10757/676293/1/license.txt8a4605be74aa9ea9d79846c1fba20a33MD51false10757/676293oai:repositorioacademico.upc.edu.pe:10757/6762932024-10-31 07:09:22.62Repositorio académico upcupc@openrepository.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.802008
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).