Oropouche virus infection in patients with acute febrile syndrome: Is a predictive model based solely on signs and symptoms useful?
Descripción del Articulo
Background Oropouche fever is an infectious disease caused by the Oropouche virus (OROV). The diagnosis and prediction of the clinical picture continue to be a great challenge for clinicians who manage patients with acute febrile syndrome. Several symptoms have been associated with OROV virus infect...
Autores: | , , , , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2022 |
Institución: | Universidad Peruana de Ciencias Aplicadas |
Repositorio: | UPC-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorioacademico.upc.edu.pe:10757/660572 |
Enlace del recurso: | http://hdl.handle.net/10757/660572 |
Nivel de acceso: | acceso abierto |
Materia: | Oropouche Virus Febrile syndrome Predictive model |
Sumario: | Background Oropouche fever is an infectious disease caused by the Oropouche virus (OROV). The diagnosis and prediction of the clinical picture continue to be a great challenge for clinicians who manage patients with acute febrile syndrome. Several symptoms have been associated with OROV virus infection in patients with febrile syndrome; however, to date, there is no clinical prediction rule, which is a fundamental tool to help the approach of this infectious disease. Objective To assess the performance of a prediction model based solely on signs and symptoms to diagnose Oropouche virus infection in patients with acute febrile syndrome. Materials and methods Validation study, which included 923 patients with acute febrile syndrome registered in the Epidemiological Surveillance database of three arbovirus endemic areas in Peru. Results A total of 97 patients (19%) were positive for OROV infection in the development group and 23.6% in the validation group. The area under the curve was 0.65 and the sensitivity, specificity, PPV, NPV, LR + and LR- were 78.2%, 35.1%, 27.6%, 83.6%, 1.20 and 0.62, respectively. Conclusions The development of a clinical prediction model for the diagnosis of Oropouche based solely on signs and symptoms does not work well. This may be due to the fact that the symptoms are nonspecific and related to other arbovirus infections, which confuse and make it difficult to predict the diagnosis, especially in endemic areas of co-infection of these diseases. For this reason, epidemiological surveillance of OROV in various settings using laboratory tests such as PCR is important. |
---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).