A Performance Evaluation of Convolutional Neural Network Architectures for Pterygium Detection in Anterior Segment Eye Images
Descripción del Articulo
In this article, various convolutional neural network (CNN) architectures for the detection of pterygium in the anterior segment of the eye are explored and compared. Five CNN architectures (ResNet101, ResNext101, Se-ResNext50, ResNext50, and MobileNet V2) are evaluated with the objective of identif...
| Autores: | , , , , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2024 |
| Institución: | Universidad Peruana de Ciencias Aplicadas |
| Repositorio: | UPC-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorioacademico.upc.edu.pe:10757/676288 |
| Enlace del recurso: | http://hdl.handle.net/10757/676288 |
| Nivel de acceso: | acceso abierto |
| Materia: | deep learning MobileNetV2 pterygium detection ResNet101 ResNext101 ResNext50 Se-ResNext50 |
| id |
UUPC_637de2b5a1906755293e6dceb20ddb5e |
|---|---|
| oai_identifier_str |
oai:repositorioacademico.upc.edu.pe:10757/676288 |
| network_acronym_str |
UUPC |
| network_name_str |
UPC-Institucional |
| repository_id_str |
2670 |
| dc.title.es_PE.fl_str_mv |
A Performance Evaluation of Convolutional Neural Network Architectures for Pterygium Detection in Anterior Segment Eye Images |
| title |
A Performance Evaluation of Convolutional Neural Network Architectures for Pterygium Detection in Anterior Segment Eye Images |
| spellingShingle |
A Performance Evaluation of Convolutional Neural Network Architectures for Pterygium Detection in Anterior Segment Eye Images Moreno-Lozano, Maria Isabel deep learning MobileNetV2 pterygium detection ResNet101 ResNext101 ResNext50 Se-ResNext50 |
| title_short |
A Performance Evaluation of Convolutional Neural Network Architectures for Pterygium Detection in Anterior Segment Eye Images |
| title_full |
A Performance Evaluation of Convolutional Neural Network Architectures for Pterygium Detection in Anterior Segment Eye Images |
| title_fullStr |
A Performance Evaluation of Convolutional Neural Network Architectures for Pterygium Detection in Anterior Segment Eye Images |
| title_full_unstemmed |
A Performance Evaluation of Convolutional Neural Network Architectures for Pterygium Detection in Anterior Segment Eye Images |
| title_sort |
A Performance Evaluation of Convolutional Neural Network Architectures for Pterygium Detection in Anterior Segment Eye Images |
| author |
Moreno-Lozano, Maria Isabel |
| author_facet |
Moreno-Lozano, Maria Isabel Ticlavilca-Inche, Edward Jordy Castañeda, Pedro Wong-Durand, Sandra Mauricio, David Oñate-Andino, Alejandra |
| author_role |
author |
| author2 |
Ticlavilca-Inche, Edward Jordy Castañeda, Pedro Wong-Durand, Sandra Mauricio, David Oñate-Andino, Alejandra |
| author2_role |
author author author author author |
| dc.contributor.author.fl_str_mv |
Moreno-Lozano, Maria Isabel Ticlavilca-Inche, Edward Jordy Castañeda, Pedro Wong-Durand, Sandra Mauricio, David Oñate-Andino, Alejandra |
| dc.subject.es_PE.fl_str_mv |
deep learning MobileNetV2 pterygium detection ResNet101 ResNext101 ResNext50 Se-ResNext50 |
| topic |
deep learning MobileNetV2 pterygium detection ResNet101 ResNext101 ResNext50 Se-ResNext50 |
| description |
In this article, various convolutional neural network (CNN) architectures for the detection of pterygium in the anterior segment of the eye are explored and compared. Five CNN architectures (ResNet101, ResNext101, Se-ResNext50, ResNext50, and MobileNet V2) are evaluated with the objective of identifying one that surpasses the precision and diagnostic efficacy of the current existing solutions. The results show that the Se-ResNext50 architecture offers the best overall performance in terms of precision, recall, and accuracy, with values of 93%, 92%, and 92%, respectively, for these metrics. These results demonstrate its potential to enhance diagnostic tools in ophthalmology. |
| publishDate |
2024 |
| dc.date.accessioned.none.fl_str_mv |
2024-10-31T06:37:06Z |
| dc.date.available.none.fl_str_mv |
2024-10-31T06:37:06Z |
| dc.date.issued.fl_str_mv |
2024-09-01 |
| dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| dc.identifier.doi.none.fl_str_mv |
10.3390/diagnostics14182026 |
| dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10757/676288 |
| dc.identifier.eissn.none.fl_str_mv |
20754418 |
| dc.identifier.journal.es_PE.fl_str_mv |
Diagnostics |
| dc.identifier.eid.none.fl_str_mv |
2-s2.0-85205041223 |
| dc.identifier.scopusid.none.fl_str_mv |
SCOPUS_ID:85205041223 |
| dc.identifier.isni.none.fl_str_mv |
0000 0001 2196 144X |
| identifier_str_mv |
10.3390/diagnostics14182026 20754418 Diagnostics 2-s2.0-85205041223 SCOPUS_ID:85205041223 0000 0001 2196 144X |
| url |
http://hdl.handle.net/10757/676288 |
| dc.language.iso.es_PE.fl_str_mv |
eng |
| language |
eng |
| dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.*.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International |
| dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ |
| dc.format.es_PE.fl_str_mv |
application/pdf |
| dc.publisher.es_PE.fl_str_mv |
Multidisciplinary Digital Publishing Institute (MDPI) |
| dc.source.es_PE.fl_str_mv |
Repositorio Academico - UPC Universidad Peruana de Ciencias Aplicadas (UPC) |
| dc.source.none.fl_str_mv |
reponame:UPC-Institucional instname:Universidad Peruana de Ciencias Aplicadas instacron:UPC |
| instname_str |
Universidad Peruana de Ciencias Aplicadas |
| instacron_str |
UPC |
| institution |
UPC |
| reponame_str |
UPC-Institucional |
| collection |
UPC-Institucional |
| dc.source.journaltitle.none.fl_str_mv |
Diagnostics |
| dc.source.volume.none.fl_str_mv |
14 |
| dc.source.issue.none.fl_str_mv |
18 |
| bitstream.url.fl_str_mv |
https://repositorioacademico.upc.edu.pe/bitstream/10757/676288/5/diagnostics-14-02026.pdf.jpg https://repositorioacademico.upc.edu.pe/bitstream/10757/676288/4/diagnostics-14-02026.pdf.txt https://repositorioacademico.upc.edu.pe/bitstream/10757/676288/3/license.txt https://repositorioacademico.upc.edu.pe/bitstream/10757/676288/2/license_rdf https://repositorioacademico.upc.edu.pe/bitstream/10757/676288/1/diagnostics-14-02026.pdf |
| bitstream.checksum.fl_str_mv |
6fb5ea563cfb3ad62c4459a57c67b997 abc5908d18e2123c0446458c1455e9e0 8a4605be74aa9ea9d79846c1fba20a33 4460e5956bc1d1639be9ae6146a50347 42ca7d8c1cbe637ae194dce19855445b |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio académico upc |
| repository.mail.fl_str_mv |
upc@openrepository.com |
| _version_ |
1846066055948009472 |
| spelling |
57b380ac69417994a8e8e1770a60be2450047658b6f884bc47ff416bee0b3b6a448300db9010f8c2406b988b289cb0a11e9e3550063dd3802ea6d9a27eeda90d556466c18c63d9ae1b7e9e0a8b9f5fffff3be59c0f4a9f120db1676aab6369c2635374b43500Moreno-Lozano, Maria IsabelTiclavilca-Inche, Edward JordyCastañeda, PedroWong-Durand, SandraMauricio, DavidOñate-Andino, Alejandra2024-10-31T06:37:06Z2024-10-31T06:37:06Z2024-09-0110.3390/diagnostics14182026http://hdl.handle.net/10757/67628820754418Diagnostics2-s2.0-85205041223SCOPUS_ID:852050412230000 0001 2196 144XIn this article, various convolutional neural network (CNN) architectures for the detection of pterygium in the anterior segment of the eye are explored and compared. Five CNN architectures (ResNet101, ResNext101, Se-ResNext50, ResNext50, and MobileNet V2) are evaluated with the objective of identifying one that surpasses the precision and diagnostic efficacy of the current existing solutions. The results show that the Se-ResNext50 architecture offers the best overall performance in terms of precision, recall, and accuracy, with values of 93%, 92%, and 92%, respectively, for these metrics. These results demonstrate its potential to enhance diagnostic tools in ophthalmology.Revisión por paresapplication/pdfengMultidisciplinary Digital Publishing Institute (MDPI)info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/Repositorio Academico - UPCUniversidad Peruana de Ciencias Aplicadas (UPC)Diagnostics1418reponame:UPC-Institucionalinstname:Universidad Peruana de Ciencias Aplicadasinstacron:UPCdeep learningMobileNetV2pterygium detectionResNet101ResNext101ResNext50Se-ResNext50A Performance Evaluation of Convolutional Neural Network Architectures for Pterygium Detection in Anterior Segment Eye Imagesinfo:eu-repo/semantics/article2024-10-31T06:37:08ZTHUMBNAILdiagnostics-14-02026.pdf.jpgdiagnostics-14-02026.pdf.jpgGenerated Thumbnailimage/jpeg98280https://repositorioacademico.upc.edu.pe/bitstream/10757/676288/5/diagnostics-14-02026.pdf.jpg6fb5ea563cfb3ad62c4459a57c67b997MD55falseTEXTdiagnostics-14-02026.pdf.txtdiagnostics-14-02026.pdf.txtExtracted texttext/plain54364https://repositorioacademico.upc.edu.pe/bitstream/10757/676288/4/diagnostics-14-02026.pdf.txtabc5908d18e2123c0446458c1455e9e0MD54falseLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorioacademico.upc.edu.pe/bitstream/10757/676288/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53falseCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorioacademico.upc.edu.pe/bitstream/10757/676288/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52falseORIGINALdiagnostics-14-02026.pdfdiagnostics-14-02026.pdfapplication/pdf4973898https://repositorioacademico.upc.edu.pe/bitstream/10757/676288/1/diagnostics-14-02026.pdf42ca7d8c1cbe637ae194dce19855445bMD51true10757/676288oai:repositorioacademico.upc.edu.pe:10757/6762882024-10-31 09:29:28.106Repositorio académico upcupc@openrepository.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
| score |
13.905282 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).