A Performance Evaluation of Convolutional Neural Network Architectures for Pterygium Detection in Anterior Segment Eye Images

Descripción del Articulo

In this article, various convolutional neural network (CNN) architectures for the detection of pterygium in the anterior segment of the eye are explored and compared. Five CNN architectures (ResNet101, ResNext101, Se-ResNext50, ResNext50, and MobileNet V2) are evaluated with the objective of identif...

Descripción completa

Detalles Bibliográficos
Autores: Moreno-Lozano, Maria Isabel, Ticlavilca-Inche, Edward Jordy, Castañeda, Pedro, Wong-Durand, Sandra, Mauricio, David, Oñate-Andino, Alejandra
Formato: artículo
Fecha de Publicación:2024
Institución:Universidad Peruana de Ciencias Aplicadas
Repositorio:UPC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorioacademico.upc.edu.pe:10757/676288
Enlace del recurso:http://hdl.handle.net/10757/676288
Nivel de acceso:acceso abierto
Materia:deep learning
MobileNetV2
pterygium detection
ResNet101
ResNext101
ResNext50
Se-ResNext50
id UUPC_637de2b5a1906755293e6dceb20ddb5e
oai_identifier_str oai:repositorioacademico.upc.edu.pe:10757/676288
network_acronym_str UUPC
network_name_str UPC-Institucional
repository_id_str 2670
dc.title.es_PE.fl_str_mv A Performance Evaluation of Convolutional Neural Network Architectures for Pterygium Detection in Anterior Segment Eye Images
title A Performance Evaluation of Convolutional Neural Network Architectures for Pterygium Detection in Anterior Segment Eye Images
spellingShingle A Performance Evaluation of Convolutional Neural Network Architectures for Pterygium Detection in Anterior Segment Eye Images
Moreno-Lozano, Maria Isabel
deep learning
MobileNetV2
pterygium detection
ResNet101
ResNext101
ResNext50
Se-ResNext50
title_short A Performance Evaluation of Convolutional Neural Network Architectures for Pterygium Detection in Anterior Segment Eye Images
title_full A Performance Evaluation of Convolutional Neural Network Architectures for Pterygium Detection in Anterior Segment Eye Images
title_fullStr A Performance Evaluation of Convolutional Neural Network Architectures for Pterygium Detection in Anterior Segment Eye Images
title_full_unstemmed A Performance Evaluation of Convolutional Neural Network Architectures for Pterygium Detection in Anterior Segment Eye Images
title_sort A Performance Evaluation of Convolutional Neural Network Architectures for Pterygium Detection in Anterior Segment Eye Images
author Moreno-Lozano, Maria Isabel
author_facet Moreno-Lozano, Maria Isabel
Ticlavilca-Inche, Edward Jordy
Castañeda, Pedro
Wong-Durand, Sandra
Mauricio, David
Oñate-Andino, Alejandra
author_role author
author2 Ticlavilca-Inche, Edward Jordy
Castañeda, Pedro
Wong-Durand, Sandra
Mauricio, David
Oñate-Andino, Alejandra
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Moreno-Lozano, Maria Isabel
Ticlavilca-Inche, Edward Jordy
Castañeda, Pedro
Wong-Durand, Sandra
Mauricio, David
Oñate-Andino, Alejandra
dc.subject.es_PE.fl_str_mv deep learning
MobileNetV2
pterygium detection
ResNet101
ResNext101
ResNext50
Se-ResNext50
topic deep learning
MobileNetV2
pterygium detection
ResNet101
ResNext101
ResNext50
Se-ResNext50
description In this article, various convolutional neural network (CNN) architectures for the detection of pterygium in the anterior segment of the eye are explored and compared. Five CNN architectures (ResNet101, ResNext101, Se-ResNext50, ResNext50, and MobileNet V2) are evaluated with the objective of identifying one that surpasses the precision and diagnostic efficacy of the current existing solutions. The results show that the Se-ResNext50 architecture offers the best overall performance in terms of precision, recall, and accuracy, with values of 93%, 92%, and 92%, respectively, for these metrics. These results demonstrate its potential to enhance diagnostic tools in ophthalmology.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-10-31T06:37:06Z
dc.date.available.none.fl_str_mv 2024-10-31T06:37:06Z
dc.date.issued.fl_str_mv 2024-09-01
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.doi.none.fl_str_mv 10.3390/diagnostics14182026
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10757/676288
dc.identifier.eissn.none.fl_str_mv 20754418
dc.identifier.journal.es_PE.fl_str_mv Diagnostics
dc.identifier.eid.none.fl_str_mv 2-s2.0-85205041223
dc.identifier.scopusid.none.fl_str_mv SCOPUS_ID:85205041223
dc.identifier.isni.none.fl_str_mv 0000 0001 2196 144X
identifier_str_mv 10.3390/diagnostics14182026
20754418
Diagnostics
2-s2.0-85205041223
SCOPUS_ID:85205041223
0000 0001 2196 144X
url http://hdl.handle.net/10757/676288
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv Multidisciplinary Digital Publishing Institute (MDPI)
dc.source.es_PE.fl_str_mv Repositorio Academico - UPC
Universidad Peruana de Ciencias Aplicadas (UPC)
dc.source.none.fl_str_mv reponame:UPC-Institucional
instname:Universidad Peruana de Ciencias Aplicadas
instacron:UPC
instname_str Universidad Peruana de Ciencias Aplicadas
instacron_str UPC
institution UPC
reponame_str UPC-Institucional
collection UPC-Institucional
dc.source.journaltitle.none.fl_str_mv Diagnostics
dc.source.volume.none.fl_str_mv 14
dc.source.issue.none.fl_str_mv 18
bitstream.url.fl_str_mv https://repositorioacademico.upc.edu.pe/bitstream/10757/676288/5/diagnostics-14-02026.pdf.jpg
https://repositorioacademico.upc.edu.pe/bitstream/10757/676288/4/diagnostics-14-02026.pdf.txt
https://repositorioacademico.upc.edu.pe/bitstream/10757/676288/3/license.txt
https://repositorioacademico.upc.edu.pe/bitstream/10757/676288/2/license_rdf
https://repositorioacademico.upc.edu.pe/bitstream/10757/676288/1/diagnostics-14-02026.pdf
bitstream.checksum.fl_str_mv 6fb5ea563cfb3ad62c4459a57c67b997
abc5908d18e2123c0446458c1455e9e0
8a4605be74aa9ea9d79846c1fba20a33
4460e5956bc1d1639be9ae6146a50347
42ca7d8c1cbe637ae194dce19855445b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio académico upc
repository.mail.fl_str_mv upc@openrepository.com
_version_ 1846066055948009472
spelling 57b380ac69417994a8e8e1770a60be2450047658b6f884bc47ff416bee0b3b6a448300db9010f8c2406b988b289cb0a11e9e3550063dd3802ea6d9a27eeda90d556466c18c63d9ae1b7e9e0a8b9f5fffff3be59c0f4a9f120db1676aab6369c2635374b43500Moreno-Lozano, Maria IsabelTiclavilca-Inche, Edward JordyCastañeda, PedroWong-Durand, SandraMauricio, DavidOñate-Andino, Alejandra2024-10-31T06:37:06Z2024-10-31T06:37:06Z2024-09-0110.3390/diagnostics14182026http://hdl.handle.net/10757/67628820754418Diagnostics2-s2.0-85205041223SCOPUS_ID:852050412230000 0001 2196 144XIn this article, various convolutional neural network (CNN) architectures for the detection of pterygium in the anterior segment of the eye are explored and compared. Five CNN architectures (ResNet101, ResNext101, Se-ResNext50, ResNext50, and MobileNet V2) are evaluated with the objective of identifying one that surpasses the precision and diagnostic efficacy of the current existing solutions. The results show that the Se-ResNext50 architecture offers the best overall performance in terms of precision, recall, and accuracy, with values of 93%, 92%, and 92%, respectively, for these metrics. These results demonstrate its potential to enhance diagnostic tools in ophthalmology.Revisión por paresapplication/pdfengMultidisciplinary Digital Publishing Institute (MDPI)info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/Repositorio Academico - UPCUniversidad Peruana de Ciencias Aplicadas (UPC)Diagnostics1418reponame:UPC-Institucionalinstname:Universidad Peruana de Ciencias Aplicadasinstacron:UPCdeep learningMobileNetV2pterygium detectionResNet101ResNext101ResNext50Se-ResNext50A Performance Evaluation of Convolutional Neural Network Architectures for Pterygium Detection in Anterior Segment Eye Imagesinfo:eu-repo/semantics/article2024-10-31T06:37:08ZTHUMBNAILdiagnostics-14-02026.pdf.jpgdiagnostics-14-02026.pdf.jpgGenerated Thumbnailimage/jpeg98280https://repositorioacademico.upc.edu.pe/bitstream/10757/676288/5/diagnostics-14-02026.pdf.jpg6fb5ea563cfb3ad62c4459a57c67b997MD55falseTEXTdiagnostics-14-02026.pdf.txtdiagnostics-14-02026.pdf.txtExtracted texttext/plain54364https://repositorioacademico.upc.edu.pe/bitstream/10757/676288/4/diagnostics-14-02026.pdf.txtabc5908d18e2123c0446458c1455e9e0MD54falseLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorioacademico.upc.edu.pe/bitstream/10757/676288/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53falseCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorioacademico.upc.edu.pe/bitstream/10757/676288/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52falseORIGINALdiagnostics-14-02026.pdfdiagnostics-14-02026.pdfapplication/pdf4973898https://repositorioacademico.upc.edu.pe/bitstream/10757/676288/1/diagnostics-14-02026.pdf42ca7d8c1cbe637ae194dce19855445bMD51true10757/676288oai:repositorioacademico.upc.edu.pe:10757/6762882024-10-31 09:29:28.106Repositorio académico upcupc@openrepository.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.905282
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).