Parallel Algorithm for Reduction of Data Processing Time in Big Data

Descripción del Articulo

Technological advances have allowed to collect and store large volumes of data over the years. Besides, it is significant that today's applications have high performance and can analyze these large datasets effectively. Today, it remains a challenge for data mining to make its algorithms and ap...

Descripción completa

Detalles Bibliográficos
Autores: Silva, Jesús, Hernández Palma, Hugo, Niebles Núẽz, William, Ovallos-Gazabon, David, Varela, Noel
Formato: artículo
Fecha de Publicación:2020
Institución:Universidad Peruana de Ciencias Aplicadas
Repositorio:UPC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorioacademico.upc.edu.pe:10757/652134
Enlace del recurso:http://hdl.handle.net/10757/652134
Nivel de acceso:acceso abierto
Materia:Computer architecture
Data mining
Large dataset
Data size
Large datasets
Large volumes
Parallel version
Technological advances
id UUPC_5c414344cb5e93b71476916e8c96dba6
oai_identifier_str oai:repositorioacademico.upc.edu.pe:10757/652134
network_acronym_str UUPC
network_name_str UPC-Institucional
repository_id_str 2670
dc.title.en_US.fl_str_mv Parallel Algorithm for Reduction of Data Processing Time in Big Data
title Parallel Algorithm for Reduction of Data Processing Time in Big Data
spellingShingle Parallel Algorithm for Reduction of Data Processing Time in Big Data
Silva, Jesús
Computer architecture
Data mining
Large dataset
Data size
Large datasets
Large volumes
Parallel version
Technological advances
title_short Parallel Algorithm for Reduction of Data Processing Time in Big Data
title_full Parallel Algorithm for Reduction of Data Processing Time in Big Data
title_fullStr Parallel Algorithm for Reduction of Data Processing Time in Big Data
title_full_unstemmed Parallel Algorithm for Reduction of Data Processing Time in Big Data
title_sort Parallel Algorithm for Reduction of Data Processing Time in Big Data
author Silva, Jesús
author_facet Silva, Jesús
Hernández Palma, Hugo
Niebles Núẽz, William
Ovallos-Gazabon, David
Varela, Noel
author_role author
author2 Hernández Palma, Hugo
Niebles Núẽz, William
Ovallos-Gazabon, David
Varela, Noel
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Silva, Jesús
Hernández Palma, Hugo
Niebles Núẽz, William
Ovallos-Gazabon, David
Varela, Noel
dc.subject.en_US.fl_str_mv Computer architecture
Data mining
Large dataset
Data size
Large datasets
Large volumes
Parallel version
Technological advances
topic Computer architecture
Data mining
Large dataset
Data size
Large datasets
Large volumes
Parallel version
Technological advances
description Technological advances have allowed to collect and store large volumes of data over the years. Besides, it is significant that today's applications have high performance and can analyze these large datasets effectively. Today, it remains a challenge for data mining to make its algorithms and applications equally efficient in the need of increasing data size and dimensionality [1]. To achieve this goal, many applications rely on parallelism, because it is an area that allows the reduction of cost depending on the execution time of the algorithms because it takes advantage of the characteristics of current computer architectures to run several processes concurrently [2]. This paper proposes a parallel version of the FuzzyPred algorithm based on the amount of data that can be processed within each of the processing threads, synchronously and independently.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-07-01T16:58:12Z
dc.date.available.none.fl_str_mv 2020-07-01T16:58:12Z
dc.date.issued.fl_str_mv 2020-01-07
dc.type.en_US.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.issn.none.fl_str_mv 17426588
dc.identifier.doi.none.fl_str_mv 10.1088/1742-6596/1432/1/012095
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10757/652134
dc.identifier.eissn.none.fl_str_mv 17426596
dc.identifier.journal.en_US.fl_str_mv Journal of Physics: Conference Series
dc.identifier.eid.none.fl_str_mv 2-s2.0-85079098169
dc.identifier.scopusid.none.fl_str_mv SCOPUS_ID:85079098169
dc.identifier.isni.none.fl_str_mv 0000 0001 2196 144X
identifier_str_mv 17426588
10.1088/1742-6596/1432/1/012095
17426596
Journal of Physics: Conference Series
2-s2.0-85079098169
SCOPUS_ID:85079098169
0000 0001 2196 144X
url http://hdl.handle.net/10757/652134
dc.language.iso.en_US.fl_str_mv eng
language eng
dc.rights.en_US.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.*.fl_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.publisher.en_US.fl_str_mv Institute of Physics Publishing
dc.source.none.fl_str_mv reponame:UPC-Institucional
instname:Universidad Peruana de Ciencias Aplicadas
instacron:UPC
instname_str Universidad Peruana de Ciencias Aplicadas
instacron_str UPC
institution UPC
reponame_str UPC-Institucional
collection UPC-Institucional
dc.source.journaltitle.none.fl_str_mv Journal of Physics: Conference Series
dc.source.volume.none.fl_str_mv 1432
dc.source.issue.none.fl_str_mv 1
bitstream.url.fl_str_mv https://repositorioacademico.upc.edu.pe/bitstream/10757/652134/5/1010881742659614321012095.pdf.jpg
https://repositorioacademico.upc.edu.pe/bitstream/10757/652134/4/1010881742659614321012095.pdf.txt
https://repositorioacademico.upc.edu.pe/bitstream/10757/652134/3/license.txt
https://repositorioacademico.upc.edu.pe/bitstream/10757/652134/2/license_rdf
https://repositorioacademico.upc.edu.pe/bitstream/10757/652134/1/1010881742659614321012095.pdf
bitstream.checksum.fl_str_mv e472ab381cca7dbd95bcf74047dab447
e1392a2960b119735c5dfe22442cd81b
8a4605be74aa9ea9d79846c1fba20a33
934f4ca17e109e0a05eaeaba504d7ce4
c4d71c51e522c136e93ea77109edc5e3
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio académico upc
repository.mail.fl_str_mv upc@openrepository.com
_version_ 1846065710000766976
spelling 4dc0aefbea6d494fa03e7acf0e5b069950070c0843e406fa4d4e04ee178a790e187500b547fd60ecb3cb34e467d8346b3bdb0450070ec5b767fcd9025e2f3715fe62bd5873001b0084486128023a07da0236300a503b500Silva, JesúsHernández Palma, HugoNiebles Núẽz, WilliamOvallos-Gazabon, DavidVarela, Noel2020-07-01T16:58:12Z2020-07-01T16:58:12Z2020-01-071742658810.1088/1742-6596/1432/1/012095http://hdl.handle.net/10757/65213417426596Journal of Physics: Conference Series2-s2.0-85079098169SCOPUS_ID:850790981690000 0001 2196 144XTechnological advances have allowed to collect and store large volumes of data over the years. Besides, it is significant that today's applications have high performance and can analyze these large datasets effectively. Today, it remains a challenge for data mining to make its algorithms and applications equally efficient in the need of increasing data size and dimensionality [1]. To achieve this goal, many applications rely on parallelism, because it is an area that allows the reduction of cost depending on the execution time of the algorithms because it takes advantage of the characteristics of current computer architectures to run several processes concurrently [2]. This paper proposes a parallel version of the FuzzyPred algorithm based on the amount of data that can be processed within each of the processing threads, synchronously and independently.engInstitute of Physics Publishinginfo:eu-repo/semantics/openAccessAttribution-NonCommercial-ShareAlike 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-sa/4.0/Computer architectureData miningLarge datasetData sizeLarge datasetsLarge volumesParallel versionTechnological advancesParallel Algorithm for Reduction of Data Processing Time in Big Datainfo:eu-repo/semantics/articleJournal of Physics: Conference Series14321reponame:UPC-Institucionalinstname:Universidad Peruana de Ciencias Aplicadasinstacron:UPC2020-07-01T16:58:17ZTHUMBNAIL1010881742659614321012095.pdf.jpg1010881742659614321012095.pdf.jpgGenerated Thumbnailimage/jpeg54487https://repositorioacademico.upc.edu.pe/bitstream/10757/652134/5/1010881742659614321012095.pdf.jpge472ab381cca7dbd95bcf74047dab447MD55falseTEXT1010881742659614321012095.pdf.txt1010881742659614321012095.pdf.txtExtracted texttext/plain23847https://repositorioacademico.upc.edu.pe/bitstream/10757/652134/4/1010881742659614321012095.pdf.txte1392a2960b119735c5dfe22442cd81bMD54falseLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorioacademico.upc.edu.pe/bitstream/10757/652134/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53falseCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81031https://repositorioacademico.upc.edu.pe/bitstream/10757/652134/2/license_rdf934f4ca17e109e0a05eaeaba504d7ce4MD52falseORIGINAL1010881742659614321012095.pdf1010881742659614321012095.pdfapplication/pdf745487https://repositorioacademico.upc.edu.pe/bitstream/10757/652134/1/1010881742659614321012095.pdfc4d71c51e522c136e93ea77109edc5e3MD51true10757/652134oai:repositorioacademico.upc.edu.pe:10757/6521342020-07-02 02:03:23.467Repositorio académico upcupc@openrepository.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.924177
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).