Parallel Algorithm for Reduction of Data Processing Time in Big Data
Descripción del Articulo
Technological advances have allowed to collect and store large volumes of data over the years. Besides, it is significant that today's applications have high performance and can analyze these large datasets effectively. Today, it remains a challenge for data mining to make its algorithms and ap...
| Autores: | , , , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2020 |
| Institución: | Universidad Peruana de Ciencias Aplicadas |
| Repositorio: | UPC-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorioacademico.upc.edu.pe:10757/652134 |
| Enlace del recurso: | http://hdl.handle.net/10757/652134 |
| Nivel de acceso: | acceso abierto |
| Materia: | Computer architecture Data mining Large dataset Data size Large datasets Large volumes Parallel version Technological advances |
| id |
UUPC_5c414344cb5e93b71476916e8c96dba6 |
|---|---|
| oai_identifier_str |
oai:repositorioacademico.upc.edu.pe:10757/652134 |
| network_acronym_str |
UUPC |
| network_name_str |
UPC-Institucional |
| repository_id_str |
2670 |
| dc.title.en_US.fl_str_mv |
Parallel Algorithm for Reduction of Data Processing Time in Big Data |
| title |
Parallel Algorithm for Reduction of Data Processing Time in Big Data |
| spellingShingle |
Parallel Algorithm for Reduction of Data Processing Time in Big Data Silva, Jesús Computer architecture Data mining Large dataset Data size Large datasets Large volumes Parallel version Technological advances |
| title_short |
Parallel Algorithm for Reduction of Data Processing Time in Big Data |
| title_full |
Parallel Algorithm for Reduction of Data Processing Time in Big Data |
| title_fullStr |
Parallel Algorithm for Reduction of Data Processing Time in Big Data |
| title_full_unstemmed |
Parallel Algorithm for Reduction of Data Processing Time in Big Data |
| title_sort |
Parallel Algorithm for Reduction of Data Processing Time in Big Data |
| author |
Silva, Jesús |
| author_facet |
Silva, Jesús Hernández Palma, Hugo Niebles Núẽz, William Ovallos-Gazabon, David Varela, Noel |
| author_role |
author |
| author2 |
Hernández Palma, Hugo Niebles Núẽz, William Ovallos-Gazabon, David Varela, Noel |
| author2_role |
author author author author |
| dc.contributor.author.fl_str_mv |
Silva, Jesús Hernández Palma, Hugo Niebles Núẽz, William Ovallos-Gazabon, David Varela, Noel |
| dc.subject.en_US.fl_str_mv |
Computer architecture Data mining Large dataset Data size Large datasets Large volumes Parallel version Technological advances |
| topic |
Computer architecture Data mining Large dataset Data size Large datasets Large volumes Parallel version Technological advances |
| description |
Technological advances have allowed to collect and store large volumes of data over the years. Besides, it is significant that today's applications have high performance and can analyze these large datasets effectively. Today, it remains a challenge for data mining to make its algorithms and applications equally efficient in the need of increasing data size and dimensionality [1]. To achieve this goal, many applications rely on parallelism, because it is an area that allows the reduction of cost depending on the execution time of the algorithms because it takes advantage of the characteristics of current computer architectures to run several processes concurrently [2]. This paper proposes a parallel version of the FuzzyPred algorithm based on the amount of data that can be processed within each of the processing threads, synchronously and independently. |
| publishDate |
2020 |
| dc.date.accessioned.none.fl_str_mv |
2020-07-01T16:58:12Z |
| dc.date.available.none.fl_str_mv |
2020-07-01T16:58:12Z |
| dc.date.issued.fl_str_mv |
2020-01-07 |
| dc.type.en_US.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| dc.identifier.issn.none.fl_str_mv |
17426588 |
| dc.identifier.doi.none.fl_str_mv |
10.1088/1742-6596/1432/1/012095 |
| dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10757/652134 |
| dc.identifier.eissn.none.fl_str_mv |
17426596 |
| dc.identifier.journal.en_US.fl_str_mv |
Journal of Physics: Conference Series |
| dc.identifier.eid.none.fl_str_mv |
2-s2.0-85079098169 |
| dc.identifier.scopusid.none.fl_str_mv |
SCOPUS_ID:85079098169 |
| dc.identifier.isni.none.fl_str_mv |
0000 0001 2196 144X |
| identifier_str_mv |
17426588 10.1088/1742-6596/1432/1/012095 17426596 Journal of Physics: Conference Series 2-s2.0-85079098169 SCOPUS_ID:85079098169 0000 0001 2196 144X |
| url |
http://hdl.handle.net/10757/652134 |
| dc.language.iso.en_US.fl_str_mv |
eng |
| language |
eng |
| dc.rights.en_US.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.*.fl_str_mv |
Attribution-NonCommercial-ShareAlike 4.0 International |
| dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
Attribution-NonCommercial-ShareAlike 4.0 International http://creativecommons.org/licenses/by-nc-sa/4.0/ |
| dc.publisher.en_US.fl_str_mv |
Institute of Physics Publishing |
| dc.source.none.fl_str_mv |
reponame:UPC-Institucional instname:Universidad Peruana de Ciencias Aplicadas instacron:UPC |
| instname_str |
Universidad Peruana de Ciencias Aplicadas |
| instacron_str |
UPC |
| institution |
UPC |
| reponame_str |
UPC-Institucional |
| collection |
UPC-Institucional |
| dc.source.journaltitle.none.fl_str_mv |
Journal of Physics: Conference Series |
| dc.source.volume.none.fl_str_mv |
1432 |
| dc.source.issue.none.fl_str_mv |
1 |
| bitstream.url.fl_str_mv |
https://repositorioacademico.upc.edu.pe/bitstream/10757/652134/5/1010881742659614321012095.pdf.jpg https://repositorioacademico.upc.edu.pe/bitstream/10757/652134/4/1010881742659614321012095.pdf.txt https://repositorioacademico.upc.edu.pe/bitstream/10757/652134/3/license.txt https://repositorioacademico.upc.edu.pe/bitstream/10757/652134/2/license_rdf https://repositorioacademico.upc.edu.pe/bitstream/10757/652134/1/1010881742659614321012095.pdf |
| bitstream.checksum.fl_str_mv |
e472ab381cca7dbd95bcf74047dab447 e1392a2960b119735c5dfe22442cd81b 8a4605be74aa9ea9d79846c1fba20a33 934f4ca17e109e0a05eaeaba504d7ce4 c4d71c51e522c136e93ea77109edc5e3 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio académico upc |
| repository.mail.fl_str_mv |
upc@openrepository.com |
| _version_ |
1846065710000766976 |
| spelling |
4dc0aefbea6d494fa03e7acf0e5b069950070c0843e406fa4d4e04ee178a790e187500b547fd60ecb3cb34e467d8346b3bdb0450070ec5b767fcd9025e2f3715fe62bd5873001b0084486128023a07da0236300a503b500Silva, JesúsHernández Palma, HugoNiebles Núẽz, WilliamOvallos-Gazabon, DavidVarela, Noel2020-07-01T16:58:12Z2020-07-01T16:58:12Z2020-01-071742658810.1088/1742-6596/1432/1/012095http://hdl.handle.net/10757/65213417426596Journal of Physics: Conference Series2-s2.0-85079098169SCOPUS_ID:850790981690000 0001 2196 144XTechnological advances have allowed to collect and store large volumes of data over the years. Besides, it is significant that today's applications have high performance and can analyze these large datasets effectively. Today, it remains a challenge for data mining to make its algorithms and applications equally efficient in the need of increasing data size and dimensionality [1]. To achieve this goal, many applications rely on parallelism, because it is an area that allows the reduction of cost depending on the execution time of the algorithms because it takes advantage of the characteristics of current computer architectures to run several processes concurrently [2]. This paper proposes a parallel version of the FuzzyPred algorithm based on the amount of data that can be processed within each of the processing threads, synchronously and independently.engInstitute of Physics Publishinginfo:eu-repo/semantics/openAccessAttribution-NonCommercial-ShareAlike 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-sa/4.0/Computer architectureData miningLarge datasetData sizeLarge datasetsLarge volumesParallel versionTechnological advancesParallel Algorithm for Reduction of Data Processing Time in Big Datainfo:eu-repo/semantics/articleJournal of Physics: Conference Series14321reponame:UPC-Institucionalinstname:Universidad Peruana de Ciencias Aplicadasinstacron:UPC2020-07-01T16:58:17ZTHUMBNAIL1010881742659614321012095.pdf.jpg1010881742659614321012095.pdf.jpgGenerated Thumbnailimage/jpeg54487https://repositorioacademico.upc.edu.pe/bitstream/10757/652134/5/1010881742659614321012095.pdf.jpge472ab381cca7dbd95bcf74047dab447MD55falseTEXT1010881742659614321012095.pdf.txt1010881742659614321012095.pdf.txtExtracted texttext/plain23847https://repositorioacademico.upc.edu.pe/bitstream/10757/652134/4/1010881742659614321012095.pdf.txte1392a2960b119735c5dfe22442cd81bMD54falseLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorioacademico.upc.edu.pe/bitstream/10757/652134/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53falseCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81031https://repositorioacademico.upc.edu.pe/bitstream/10757/652134/2/license_rdf934f4ca17e109e0a05eaeaba504d7ce4MD52falseORIGINAL1010881742659614321012095.pdf1010881742659614321012095.pdfapplication/pdf745487https://repositorioacademico.upc.edu.pe/bitstream/10757/652134/1/1010881742659614321012095.pdfc4d71c51e522c136e93ea77109edc5e3MD51true10757/652134oai:repositorioacademico.upc.edu.pe:10757/6521342020-07-02 02:03:23.467Repositorio académico upcupc@openrepository.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
| score |
13.924177 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).