NevusCheck: A Dysplastic Nevi Detection Model Using Convolutional Neural Networks †
Descripción del Articulo
Dysplastic nevi are skin lesions that have distinctive clinical features and are considered risk markers for the development of melanoma, the deadliest type of skin cancer. A specific deep learning technique to identify diseases is convolutional neural networks (CNNs) because of their great capacity...
Autores: | , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2025 |
Institución: | Universidad Peruana de Ciencias Aplicadas |
Repositorio: | UPC-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorioacademico.upc.edu.pe:10757/684677 |
Enlace del recurso: | http://hdl.handle.net/10757/684677 |
Nivel de acceso: | acceso abierto |
Materia: | convolutional neural networks deep learning dysplastic nevus image classification melanoma skin cancer skin lesion |
id |
UUPC_5c0fe3d77651989d1d330c28679faa19 |
---|---|
oai_identifier_str |
oai:repositorioacademico.upc.edu.pe:10757/684677 |
network_acronym_str |
UUPC |
network_name_str |
UPC-Institucional |
repository_id_str |
2670 |
dc.title.es_PE.fl_str_mv |
NevusCheck: A Dysplastic Nevi Detection Model Using Convolutional Neural Networks † |
title |
NevusCheck: A Dysplastic Nevi Detection Model Using Convolutional Neural Networks † |
spellingShingle |
NevusCheck: A Dysplastic Nevi Detection Model Using Convolutional Neural Networks † Ingaroca-Torres, Andreluis convolutional neural networks deep learning dysplastic nevus image classification melanoma skin cancer skin lesion |
title_short |
NevusCheck: A Dysplastic Nevi Detection Model Using Convolutional Neural Networks † |
title_full |
NevusCheck: A Dysplastic Nevi Detection Model Using Convolutional Neural Networks † |
title_fullStr |
NevusCheck: A Dysplastic Nevi Detection Model Using Convolutional Neural Networks † |
title_full_unstemmed |
NevusCheck: A Dysplastic Nevi Detection Model Using Convolutional Neural Networks † |
title_sort |
NevusCheck: A Dysplastic Nevi Detection Model Using Convolutional Neural Networks † |
author |
Ingaroca-Torres, Andreluis |
author_facet |
Ingaroca-Torres, Andreluis Heredia-Moscoso, Lucía Aures-García, Alvaro |
author_role |
author |
author2 |
Heredia-Moscoso, Lucía Aures-García, Alvaro |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Ingaroca-Torres, Andreluis Heredia-Moscoso, Lucía Aures-García, Alvaro |
dc.subject.es_PE.fl_str_mv |
convolutional neural networks deep learning dysplastic nevus image classification melanoma skin cancer skin lesion |
topic |
convolutional neural networks deep learning dysplastic nevus image classification melanoma skin cancer skin lesion |
description |
Dysplastic nevi are skin lesions that have distinctive clinical features and are considered risk markers for the development of melanoma, the deadliest type of skin cancer. A specific deep learning technique to identify diseases is convolutional neural networks (CNNs) because of their great capacity to extract features and classify objects. Therefore, the research aims to develop a model to diagnose dysplastic nevi using a deep learning network whose classification is based on the pre-trained architecture EfficientNet-B7, which was selected for its high classification accuracy and low computational complexity. As for the results obtained, an accuracy of 78.33% was achieved in the classification model. Also, the degree of similarity between the detection by a dermatology expert and the proposed model reached an accuracy of 79.69%. |
publishDate |
2025 |
dc.date.accessioned.none.fl_str_mv |
2025-04-30T02:43:25Z |
dc.date.available.none.fl_str_mv |
2025-04-30T02:43:25Z |
dc.date.issued.fl_str_mv |
2025-01-01 |
dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
dc.identifier.doi.none.fl_str_mv |
10.3390/engproc2025083011 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10757/684677 |
dc.identifier.eissn.none.fl_str_mv |
26734591 |
dc.identifier.journal.es_PE.fl_str_mv |
Engineering Proceedings |
dc.identifier.eid.none.fl_str_mv |
2-s2.0-105001338227 |
dc.identifier.scopusid.none.fl_str_mv |
SCOPUS_ID:105001338227 |
identifier_str_mv |
10.3390/engproc2025083011 26734591 Engineering Proceedings 2-s2.0-105001338227 SCOPUS_ID:105001338227 |
url |
http://hdl.handle.net/10757/684677 |
dc.language.iso.es_PE.fl_str_mv |
eng |
language |
eng |
dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.*.fl_str_mv |
Attribution 4.0 International |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
Attribution 4.0 International http://creativecommons.org/licenses/by/4.0/ |
dc.format.es_PE.fl_str_mv |
application/pdf |
dc.publisher.es_PE.fl_str_mv |
Multidisciplinary Digital Publishing Institute (MDPI) |
dc.source.none.fl_str_mv |
reponame:UPC-Institucional instname:Universidad Peruana de Ciencias Aplicadas instacron:UPC |
instname_str |
Universidad Peruana de Ciencias Aplicadas |
instacron_str |
UPC |
institution |
UPC |
reponame_str |
UPC-Institucional |
collection |
UPC-Institucional |
dc.source.journaltitle.none.fl_str_mv |
Engineering Proceedings |
dc.source.volume.none.fl_str_mv |
83 |
dc.source.issue.none.fl_str_mv |
1 |
bitstream.url.fl_str_mv |
https://repositorioacademico.upc.edu.pe/bitstream/10757/684677/5/engproc-83-00011.pdf.jpg https://repositorioacademico.upc.edu.pe/bitstream/10757/684677/4/engproc-83-00011.pdf.txt https://repositorioacademico.upc.edu.pe/bitstream/10757/684677/3/license.txt https://repositorioacademico.upc.edu.pe/bitstream/10757/684677/2/license_rdf https://repositorioacademico.upc.edu.pe/bitstream/10757/684677/1/engproc-83-00011.pdf |
bitstream.checksum.fl_str_mv |
150847d701174242f5715da7e3945bf3 0b0d8f93c73e4273027242fcada53bb4 8a4605be74aa9ea9d79846c1fba20a33 0175ea4a2d4caec4bbcc37e300941108 35967f159837cf995833aff726bb5f07 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio académico upc |
repository.mail.fl_str_mv |
upc@openrepository.com |
_version_ |
1845545917538631680 |
spelling |
893de7d18f26b2ce97c4e9c8f26356a5300b164f10ad24f99410eb4e9ee728390f43006469f4454453e2a6630dfcabe2bf12c1Ingaroca-Torres, AndreluisHeredia-Moscoso, LucíaAures-García, Alvaro2025-04-30T02:43:25Z2025-04-30T02:43:25Z2025-01-0110.3390/engproc2025083011http://hdl.handle.net/10757/68467726734591Engineering Proceedings2-s2.0-105001338227SCOPUS_ID:105001338227Dysplastic nevi are skin lesions that have distinctive clinical features and are considered risk markers for the development of melanoma, the deadliest type of skin cancer. A specific deep learning technique to identify diseases is convolutional neural networks (CNNs) because of their great capacity to extract features and classify objects. Therefore, the research aims to develop a model to diagnose dysplastic nevi using a deep learning network whose classification is based on the pre-trained architecture EfficientNet-B7, which was selected for its high classification accuracy and low computational complexity. As for the results obtained, an accuracy of 78.33% was achieved in the classification model. Also, the degree of similarity between the detection by a dermatology expert and the proposed model reached an accuracy of 79.69%.ODS 4: Educación de calidadODS 3: Salud y bienestarODS 5: Igualdad de géneroapplication/pdfengMultidisciplinary Digital Publishing Institute (MDPI)info:eu-repo/semantics/openAccessAttribution 4.0 Internationalhttp://creativecommons.org/licenses/by/4.0/convolutional neural networksdeep learningdysplastic nevusimage classificationmelanomaskin cancerskin lesionNevusCheck: A Dysplastic Nevi Detection Model Using Convolutional Neural Networks †info:eu-repo/semantics/articleEngineering Proceedings831reponame:UPC-Institucionalinstname:Universidad Peruana de Ciencias Aplicadasinstacron:UPC2025-04-30T02:43:26ZTHUMBNAILengproc-83-00011.pdf.jpgengproc-83-00011.pdf.jpgGenerated Thumbnailimage/jpeg93109https://repositorioacademico.upc.edu.pe/bitstream/10757/684677/5/engproc-83-00011.pdf.jpg150847d701174242f5715da7e3945bf3MD55falseTEXTengproc-83-00011.pdf.txtengproc-83-00011.pdf.txtExtracted texttext/plain35582https://repositorioacademico.upc.edu.pe/bitstream/10757/684677/4/engproc-83-00011.pdf.txt0b0d8f93c73e4273027242fcada53bb4MD54falseLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorioacademico.upc.edu.pe/bitstream/10757/684677/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53falseCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8908https://repositorioacademico.upc.edu.pe/bitstream/10757/684677/2/license_rdf0175ea4a2d4caec4bbcc37e300941108MD52falseORIGINALengproc-83-00011.pdfengproc-83-00011.pdfapplication/pdf1868308https://repositorioacademico.upc.edu.pe/bitstream/10757/684677/1/engproc-83-00011.pdf35967f159837cf995833aff726bb5f07MD51true10757/684677oai:repositorioacademico.upc.edu.pe:10757/6846772025-06-26 12:09:05.089Repositorio académico upcupc@openrepository.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
score |
13.754011 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).