NevusCheck: A Dysplastic Nevi Detection Model Using Convolutional Neural Networks †

Descripción del Articulo

Dysplastic nevi are skin lesions that have distinctive clinical features and are considered risk markers for the development of melanoma, the deadliest type of skin cancer. A specific deep learning technique to identify diseases is convolutional neural networks (CNNs) because of their great capacity...

Descripción completa

Detalles Bibliográficos
Autores: Ingaroca-Torres, Andreluis, Heredia-Moscoso, Lucía, Aures-García, Alvaro
Formato: artículo
Fecha de Publicación:2025
Institución:Universidad Peruana de Ciencias Aplicadas
Repositorio:UPC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorioacademico.upc.edu.pe:10757/684677
Enlace del recurso:http://hdl.handle.net/10757/684677
Nivel de acceso:acceso abierto
Materia:convolutional neural networks
deep learning
dysplastic nevus
image classification
melanoma
skin cancer
skin lesion
id UUPC_5c0fe3d77651989d1d330c28679faa19
oai_identifier_str oai:repositorioacademico.upc.edu.pe:10757/684677
network_acronym_str UUPC
network_name_str UPC-Institucional
repository_id_str 2670
dc.title.es_PE.fl_str_mv NevusCheck: A Dysplastic Nevi Detection Model Using Convolutional Neural Networks †
title NevusCheck: A Dysplastic Nevi Detection Model Using Convolutional Neural Networks †
spellingShingle NevusCheck: A Dysplastic Nevi Detection Model Using Convolutional Neural Networks †
Ingaroca-Torres, Andreluis
convolutional neural networks
deep learning
dysplastic nevus
image classification
melanoma
skin cancer
skin lesion
title_short NevusCheck: A Dysplastic Nevi Detection Model Using Convolutional Neural Networks †
title_full NevusCheck: A Dysplastic Nevi Detection Model Using Convolutional Neural Networks †
title_fullStr NevusCheck: A Dysplastic Nevi Detection Model Using Convolutional Neural Networks †
title_full_unstemmed NevusCheck: A Dysplastic Nevi Detection Model Using Convolutional Neural Networks †
title_sort NevusCheck: A Dysplastic Nevi Detection Model Using Convolutional Neural Networks †
author Ingaroca-Torres, Andreluis
author_facet Ingaroca-Torres, Andreluis
Heredia-Moscoso, Lucía
Aures-García, Alvaro
author_role author
author2 Heredia-Moscoso, Lucía
Aures-García, Alvaro
author2_role author
author
dc.contributor.author.fl_str_mv Ingaroca-Torres, Andreluis
Heredia-Moscoso, Lucía
Aures-García, Alvaro
dc.subject.es_PE.fl_str_mv convolutional neural networks
deep learning
dysplastic nevus
image classification
melanoma
skin cancer
skin lesion
topic convolutional neural networks
deep learning
dysplastic nevus
image classification
melanoma
skin cancer
skin lesion
description Dysplastic nevi are skin lesions that have distinctive clinical features and are considered risk markers for the development of melanoma, the deadliest type of skin cancer. A specific deep learning technique to identify diseases is convolutional neural networks (CNNs) because of their great capacity to extract features and classify objects. Therefore, the research aims to develop a model to diagnose dysplastic nevi using a deep learning network whose classification is based on the pre-trained architecture EfficientNet-B7, which was selected for its high classification accuracy and low computational complexity. As for the results obtained, an accuracy of 78.33% was achieved in the classification model. Also, the degree of similarity between the detection by a dermatology expert and the proposed model reached an accuracy of 79.69%.
publishDate 2025
dc.date.accessioned.none.fl_str_mv 2025-04-30T02:43:25Z
dc.date.available.none.fl_str_mv 2025-04-30T02:43:25Z
dc.date.issued.fl_str_mv 2025-01-01
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.doi.none.fl_str_mv 10.3390/engproc2025083011
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10757/684677
dc.identifier.eissn.none.fl_str_mv 26734591
dc.identifier.journal.es_PE.fl_str_mv Engineering Proceedings
dc.identifier.eid.none.fl_str_mv 2-s2.0-105001338227
dc.identifier.scopusid.none.fl_str_mv SCOPUS_ID:105001338227
identifier_str_mv 10.3390/engproc2025083011
26734591
Engineering Proceedings
2-s2.0-105001338227
SCOPUS_ID:105001338227
url http://hdl.handle.net/10757/684677
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.*.fl_str_mv Attribution 4.0 International
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv Attribution 4.0 International
http://creativecommons.org/licenses/by/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv Multidisciplinary Digital Publishing Institute (MDPI)
dc.source.none.fl_str_mv reponame:UPC-Institucional
instname:Universidad Peruana de Ciencias Aplicadas
instacron:UPC
instname_str Universidad Peruana de Ciencias Aplicadas
instacron_str UPC
institution UPC
reponame_str UPC-Institucional
collection UPC-Institucional
dc.source.journaltitle.none.fl_str_mv Engineering Proceedings
dc.source.volume.none.fl_str_mv 83
dc.source.issue.none.fl_str_mv 1
bitstream.url.fl_str_mv https://repositorioacademico.upc.edu.pe/bitstream/10757/684677/5/engproc-83-00011.pdf.jpg
https://repositorioacademico.upc.edu.pe/bitstream/10757/684677/4/engproc-83-00011.pdf.txt
https://repositorioacademico.upc.edu.pe/bitstream/10757/684677/3/license.txt
https://repositorioacademico.upc.edu.pe/bitstream/10757/684677/2/license_rdf
https://repositorioacademico.upc.edu.pe/bitstream/10757/684677/1/engproc-83-00011.pdf
bitstream.checksum.fl_str_mv 150847d701174242f5715da7e3945bf3
0b0d8f93c73e4273027242fcada53bb4
8a4605be74aa9ea9d79846c1fba20a33
0175ea4a2d4caec4bbcc37e300941108
35967f159837cf995833aff726bb5f07
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio académico upc
repository.mail.fl_str_mv upc@openrepository.com
_version_ 1845545917538631680
spelling 893de7d18f26b2ce97c4e9c8f26356a5300b164f10ad24f99410eb4e9ee728390f43006469f4454453e2a6630dfcabe2bf12c1Ingaroca-Torres, AndreluisHeredia-Moscoso, LucíaAures-García, Alvaro2025-04-30T02:43:25Z2025-04-30T02:43:25Z2025-01-0110.3390/engproc2025083011http://hdl.handle.net/10757/68467726734591Engineering Proceedings2-s2.0-105001338227SCOPUS_ID:105001338227Dysplastic nevi are skin lesions that have distinctive clinical features and are considered risk markers for the development of melanoma, the deadliest type of skin cancer. A specific deep learning technique to identify diseases is convolutional neural networks (CNNs) because of their great capacity to extract features and classify objects. Therefore, the research aims to develop a model to diagnose dysplastic nevi using a deep learning network whose classification is based on the pre-trained architecture EfficientNet-B7, which was selected for its high classification accuracy and low computational complexity. As for the results obtained, an accuracy of 78.33% was achieved in the classification model. Also, the degree of similarity between the detection by a dermatology expert and the proposed model reached an accuracy of 79.69%.ODS 4: Educación de calidadODS 3: Salud y bienestarODS 5: Igualdad de géneroapplication/pdfengMultidisciplinary Digital Publishing Institute (MDPI)info:eu-repo/semantics/openAccessAttribution 4.0 Internationalhttp://creativecommons.org/licenses/by/4.0/convolutional neural networksdeep learningdysplastic nevusimage classificationmelanomaskin cancerskin lesionNevusCheck: A Dysplastic Nevi Detection Model Using Convolutional Neural Networks †info:eu-repo/semantics/articleEngineering Proceedings831reponame:UPC-Institucionalinstname:Universidad Peruana de Ciencias Aplicadasinstacron:UPC2025-04-30T02:43:26ZTHUMBNAILengproc-83-00011.pdf.jpgengproc-83-00011.pdf.jpgGenerated Thumbnailimage/jpeg93109https://repositorioacademico.upc.edu.pe/bitstream/10757/684677/5/engproc-83-00011.pdf.jpg150847d701174242f5715da7e3945bf3MD55falseTEXTengproc-83-00011.pdf.txtengproc-83-00011.pdf.txtExtracted texttext/plain35582https://repositorioacademico.upc.edu.pe/bitstream/10757/684677/4/engproc-83-00011.pdf.txt0b0d8f93c73e4273027242fcada53bb4MD54falseLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorioacademico.upc.edu.pe/bitstream/10757/684677/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53falseCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8908https://repositorioacademico.upc.edu.pe/bitstream/10757/684677/2/license_rdf0175ea4a2d4caec4bbcc37e300941108MD52falseORIGINALengproc-83-00011.pdfengproc-83-00011.pdfapplication/pdf1868308https://repositorioacademico.upc.edu.pe/bitstream/10757/684677/1/engproc-83-00011.pdf35967f159837cf995833aff726bb5f07MD51true10757/684677oai:repositorioacademico.upc.edu.pe:10757/6846772025-06-26 12:09:05.089Repositorio académico upcupc@openrepository.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.754011
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).