Mobile Application Based on Convolutional Neural Networks for Pterygium Detection in Anterior Segment Eye Images at Ophthalmological Medical Centers
Descripción del Articulo
This article introduces an innovative mobile solution for Pterygium detection, an eye disease, using a classification model based on the convolutional neural network (CNN) architecture ResNext50 in images of the anterior segment of the eye. Four models (ResNext50, ResNet50, MobileNet v2, and DenseNe...
Autores: | , , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2024 |
Institución: | Universidad Peruana de Ciencias Aplicadas |
Repositorio: | UPC-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorioacademico.upc.edu.pe:10757/676000 |
Enlace del recurso: | http://hdl.handle.net/10757/676000 |
Nivel de acceso: | acceso abierto |
Materia: | automatic pterygium classification deep learning system photograph of anterior segment of the eye pterygium detection |
id |
UUPC_3bf5f02037363b9c31b16844385d8a27 |
---|---|
oai_identifier_str |
oai:repositorioacademico.upc.edu.pe:10757/676000 |
network_acronym_str |
UUPC |
network_name_str |
UPC-Institucional |
repository_id_str |
2670 |
dc.title.es_PE.fl_str_mv |
Mobile Application Based on Convolutional Neural Networks for Pterygium Detection in Anterior Segment Eye Images at Ophthalmological Medical Centers |
title |
Mobile Application Based on Convolutional Neural Networks for Pterygium Detection in Anterior Segment Eye Images at Ophthalmological Medical Centers |
spellingShingle |
Mobile Application Based on Convolutional Neural Networks for Pterygium Detection in Anterior Segment Eye Images at Ophthalmological Medical Centers Ticlavilcainche, Edward Jordy automatic pterygium classification deep learning system photograph of anterior segment of the eye pterygium detection |
title_short |
Mobile Application Based on Convolutional Neural Networks for Pterygium Detection in Anterior Segment Eye Images at Ophthalmological Medical Centers |
title_full |
Mobile Application Based on Convolutional Neural Networks for Pterygium Detection in Anterior Segment Eye Images at Ophthalmological Medical Centers |
title_fullStr |
Mobile Application Based on Convolutional Neural Networks for Pterygium Detection in Anterior Segment Eye Images at Ophthalmological Medical Centers |
title_full_unstemmed |
Mobile Application Based on Convolutional Neural Networks for Pterygium Detection in Anterior Segment Eye Images at Ophthalmological Medical Centers |
title_sort |
Mobile Application Based on Convolutional Neural Networks for Pterygium Detection in Anterior Segment Eye Images at Ophthalmological Medical Centers |
author |
Ticlavilcainche, Edward Jordy |
author_facet |
Ticlavilcainche, Edward Jordy Moreno-Lozano, Maria Isabel Castañeda, Pedro Wong-Durand, Sandra Oñate-Andino, Alejandra |
author_role |
author |
author2 |
Moreno-Lozano, Maria Isabel Castañeda, Pedro Wong-Durand, Sandra Oñate-Andino, Alejandra |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Ticlavilcainche, Edward Jordy Moreno-Lozano, Maria Isabel Castañeda, Pedro Wong-Durand, Sandra Oñate-Andino, Alejandra |
dc.subject.es_PE.fl_str_mv |
automatic pterygium classification deep learning system photograph of anterior segment of the eye pterygium detection |
topic |
automatic pterygium classification deep learning system photograph of anterior segment of the eye pterygium detection |
description |
This article introduces an innovative mobile solution for Pterygium detection, an eye disease, using a classification model based on the convolutional neural network (CNN) architecture ResNext50 in images of the anterior segment of the eye. Four models (ResNext50, ResNet50, MobileNet v2, and DenseNet201) were used for the analysis, with ResNext50 standing out for its high accuracy and diagnostic efficiency. The research, focused on applications for ophthalmological medical centers in Lima, Peru, explains the process of development and integration of the ResNext50 model into a mobile application. The results indicate the high effectiveness of the system, highlighting its high precision, recall, and specificity, which exceed 85%, thus showing its potential as an advanced diagnostic tool in ophthalmology. This system represents a significant tool in ophthalmology, especially for areas with limited access to specialists, offering a rapid and reliable diagnosis of Pterygium. The study also addresses the technical challenges and clinical implications of implementing this technology in a real-world context |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-10-05T09:37:04Z |
dc.date.available.none.fl_str_mv |
2024-10-05T09:37:04Z |
dc.date.issued.fl_str_mv |
2024-05-21 |
dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
dc.identifier.doi.none.fl_str_mv |
10.3991/ijoe.v20i08.48421 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10757/676000 |
dc.identifier.eissn.none.fl_str_mv |
26268493 |
dc.identifier.journal.es_PE.fl_str_mv |
International journal of online and biomedical engineering |
dc.identifier.eid.none.fl_str_mv |
2-s2.0-85195135299 |
dc.identifier.scopusid.none.fl_str_mv |
SCOPUS_ID:85195135299 |
identifier_str_mv |
10.3991/ijoe.v20i08.48421 26268493 International journal of online and biomedical engineering 2-s2.0-85195135299 SCOPUS_ID:85195135299 |
url |
http://hdl.handle.net/10757/676000 |
dc.language.iso.es_PE.fl_str_mv |
eng |
language |
eng |
dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.*.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.format.es_PE.fl_str_mv |
application/html |
dc.publisher.es_PE.fl_str_mv |
International Federation of Engineering Education Societies (IFEES) |
dc.source.none.fl_str_mv |
reponame:UPC-Institucional instname:Universidad Peruana de Ciencias Aplicadas instacron:UPC |
instname_str |
Universidad Peruana de Ciencias Aplicadas |
instacron_str |
UPC |
institution |
UPC |
reponame_str |
UPC-Institucional |
collection |
UPC-Institucional |
dc.source.journaltitle.none.fl_str_mv |
International journal of online and biomedical engineering |
dc.source.volume.none.fl_str_mv |
20 |
dc.source.issue.none.fl_str_mv |
8 |
dc.source.beginpage.none.fl_str_mv |
115 |
dc.source.endpage.none.fl_str_mv |
138 |
bitstream.url.fl_str_mv |
https://repositorioacademico.upc.edu.pe/bitstream/10757/676000/5/115_Mobile%2bApplication%2bBased%2bon%2bConvolutional%2bNeural%2bNetworks%2bfor%2bPterygium%2bDetection%2bin%2bAnterior%2bSegment%2bEye%2bImages%2bat%2bOphthalmological%2bMedical%2bCenters.pdf.jpg https://repositorioacademico.upc.edu.pe/bitstream/10757/676000/4/115_Mobile%2bApplication%2bBased%2bon%2bConvolutional%2bNeural%2bNetworks%2bfor%2bPterygium%2bDetection%2bin%2bAnterior%2bSegment%2bEye%2bImages%2bat%2bOphthalmological%2bMedical%2bCenters.pdf.txt https://repositorioacademico.upc.edu.pe/bitstream/10757/676000/3/license.txt https://repositorioacademico.upc.edu.pe/bitstream/10757/676000/2/license_rdf https://repositorioacademico.upc.edu.pe/bitstream/10757/676000/1/115_Mobile%2bApplication%2bBased%2bon%2bConvolutional%2bNeural%2bNetworks%2bfor%2bPterygium%2bDetection%2bin%2bAnterior%2bSegment%2bEye%2bImages%2bat%2bOphthalmological%2bMedical%2bCenters.pdf |
bitstream.checksum.fl_str_mv |
5a8646b17da84d924e9014e5eda74a37 7baeb40b1330584fe62ae836cffda1b3 8a4605be74aa9ea9d79846c1fba20a33 4460e5956bc1d1639be9ae6146a50347 51bcbb6e961452b4e9c0b3879ca9e3ff |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio académico upc |
repository.mail.fl_str_mv |
upc@openrepository.com |
_version_ |
1837187181111672832 |
spelling |
56abf241d94c120f21bde7caaab171fa30057b380ac69417994a8e8e1770a60be24300db9010f8c2406b988b289cb0a11e9e3550063dd3802ea6d9a27eeda90d556466c18f4a9f120db1676aab6369c2635374b43300Ticlavilcainche, Edward JordyMoreno-Lozano, Maria IsabelCastañeda, PedroWong-Durand, SandraOñate-Andino, Alejandra2024-10-05T09:37:04Z2024-10-05T09:37:04Z2024-05-2110.3991/ijoe.v20i08.48421http://hdl.handle.net/10757/67600026268493International journal of online and biomedical engineering2-s2.0-85195135299SCOPUS_ID:85195135299This article introduces an innovative mobile solution for Pterygium detection, an eye disease, using a classification model based on the convolutional neural network (CNN) architecture ResNext50 in images of the anterior segment of the eye. Four models (ResNext50, ResNet50, MobileNet v2, and DenseNet201) were used for the analysis, with ResNext50 standing out for its high accuracy and diagnostic efficiency. The research, focused on applications for ophthalmological medical centers in Lima, Peru, explains the process of development and integration of the ResNext50 model into a mobile application. The results indicate the high effectiveness of the system, highlighting its high precision, recall, and specificity, which exceed 85%, thus showing its potential as an advanced diagnostic tool in ophthalmology. This system represents a significant tool in ophthalmology, especially for areas with limited access to specialists, offering a rapid and reliable diagnosis of Pterygium. The study also addresses the technical challenges and clinical implications of implementing this technology in a real-world contextapplication/htmlengInternational Federation of Engineering Education Societies (IFEES)info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/automatic pterygium classificationdeep learning systemphotograph of anterior segment of the eyepterygium detectionMobile Application Based on Convolutional Neural Networks for Pterygium Detection in Anterior Segment Eye Images at Ophthalmological Medical Centersinfo:eu-repo/semantics/articleInternational journal of online and biomedical engineering208115138reponame:UPC-Institucionalinstname:Universidad Peruana de Ciencias Aplicadasinstacron:UPC2024-10-05T09:37:06ZTHUMBNAIL115_Mobile+Application+Based+on+Convolutional+Neural+Networks+for+Pterygium+Detection+in+Anterior+Segment+Eye+Images+at+Ophthalmological+Medical+Centers.pdf.jpg115_Mobile+Application+Based+on+Convolutional+Neural+Networks+for+Pterygium+Detection+in+Anterior+Segment+Eye+Images+at+Ophthalmological+Medical+Centers.pdf.jpgGenerated Thumbnailimage/jpeg116645https://repositorioacademico.upc.edu.pe/bitstream/10757/676000/5/115_Mobile%2bApplication%2bBased%2bon%2bConvolutional%2bNeural%2bNetworks%2bfor%2bPterygium%2bDetection%2bin%2bAnterior%2bSegment%2bEye%2bImages%2bat%2bOphthalmological%2bMedical%2bCenters.pdf.jpg5a8646b17da84d924e9014e5eda74a37MD55falseTEXT115_Mobile+Application+Based+on+Convolutional+Neural+Networks+for+Pterygium+Detection+in+Anterior+Segment+Eye+Images+at+Ophthalmological+Medical+Centers.pdf.txt115_Mobile+Application+Based+on+Convolutional+Neural+Networks+for+Pterygium+Detection+in+Anterior+Segment+Eye+Images+at+Ophthalmological+Medical+Centers.pdf.txtExtracted texttext/plain62096https://repositorioacademico.upc.edu.pe/bitstream/10757/676000/4/115_Mobile%2bApplication%2bBased%2bon%2bConvolutional%2bNeural%2bNetworks%2bfor%2bPterygium%2bDetection%2bin%2bAnterior%2bSegment%2bEye%2bImages%2bat%2bOphthalmological%2bMedical%2bCenters.pdf.txt7baeb40b1330584fe62ae836cffda1b3MD54falseLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorioacademico.upc.edu.pe/bitstream/10757/676000/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53falseCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorioacademico.upc.edu.pe/bitstream/10757/676000/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52falseORIGINAL115_Mobile+Application+Based+on+Convolutional+Neural+Networks+for+Pterygium+Detection+in+Anterior+Segment+Eye+Images+at+Ophthalmological+Medical+Centers.pdf115_Mobile+Application+Based+on+Convolutional+Neural+Networks+for+Pterygium+Detection+in+Anterior+Segment+Eye+Images+at+Ophthalmological+Medical+Centers.pdfapplication/pdf2277419https://repositorioacademico.upc.edu.pe/bitstream/10757/676000/1/115_Mobile%2bApplication%2bBased%2bon%2bConvolutional%2bNeural%2bNetworks%2bfor%2bPterygium%2bDetection%2bin%2bAnterior%2bSegment%2bEye%2bImages%2bat%2bOphthalmological%2bMedical%2bCenters.pdf51bcbb6e961452b4e9c0b3879ca9e3ffMD51true10757/676000oai:repositorioacademico.upc.edu.pe:10757/6760002024-10-06 04:03:53.177Repositorio académico upcupc@openrepository.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
score |
13.927214 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).