Mobile Application Based on Convolutional Neural Networks for Pterygium Detection in Anterior Segment Eye Images at Ophthalmological Medical Centers

Descripción del Articulo

This article introduces an innovative mobile solution for Pterygium detection, an eye disease, using a classification model based on the convolutional neural network (CNN) architecture ResNext50 in images of the anterior segment of the eye. Four models (ResNext50, ResNet50, MobileNet v2, and DenseNe...

Descripción completa

Detalles Bibliográficos
Autores: Ticlavilcainche, Edward Jordy, Moreno-Lozano, Maria Isabel, Castañeda, Pedro, Wong-Durand, Sandra, Oñate-Andino, Alejandra
Formato: artículo
Fecha de Publicación:2024
Institución:Universidad Peruana de Ciencias Aplicadas
Repositorio:UPC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorioacademico.upc.edu.pe:10757/676000
Enlace del recurso:http://hdl.handle.net/10757/676000
Nivel de acceso:acceso abierto
Materia:automatic pterygium classification
deep learning system
photograph of anterior segment of the eye
pterygium detection
id UUPC_3bf5f02037363b9c31b16844385d8a27
oai_identifier_str oai:repositorioacademico.upc.edu.pe:10757/676000
network_acronym_str UUPC
network_name_str UPC-Institucional
repository_id_str 2670
dc.title.es_PE.fl_str_mv Mobile Application Based on Convolutional Neural Networks for Pterygium Detection in Anterior Segment Eye Images at Ophthalmological Medical Centers
title Mobile Application Based on Convolutional Neural Networks for Pterygium Detection in Anterior Segment Eye Images at Ophthalmological Medical Centers
spellingShingle Mobile Application Based on Convolutional Neural Networks for Pterygium Detection in Anterior Segment Eye Images at Ophthalmological Medical Centers
Ticlavilcainche, Edward Jordy
automatic pterygium classification
deep learning system
photograph of anterior segment of the eye
pterygium detection
title_short Mobile Application Based on Convolutional Neural Networks for Pterygium Detection in Anterior Segment Eye Images at Ophthalmological Medical Centers
title_full Mobile Application Based on Convolutional Neural Networks for Pterygium Detection in Anterior Segment Eye Images at Ophthalmological Medical Centers
title_fullStr Mobile Application Based on Convolutional Neural Networks for Pterygium Detection in Anterior Segment Eye Images at Ophthalmological Medical Centers
title_full_unstemmed Mobile Application Based on Convolutional Neural Networks for Pterygium Detection in Anterior Segment Eye Images at Ophthalmological Medical Centers
title_sort Mobile Application Based on Convolutional Neural Networks for Pterygium Detection in Anterior Segment Eye Images at Ophthalmological Medical Centers
author Ticlavilcainche, Edward Jordy
author_facet Ticlavilcainche, Edward Jordy
Moreno-Lozano, Maria Isabel
Castañeda, Pedro
Wong-Durand, Sandra
Oñate-Andino, Alejandra
author_role author
author2 Moreno-Lozano, Maria Isabel
Castañeda, Pedro
Wong-Durand, Sandra
Oñate-Andino, Alejandra
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Ticlavilcainche, Edward Jordy
Moreno-Lozano, Maria Isabel
Castañeda, Pedro
Wong-Durand, Sandra
Oñate-Andino, Alejandra
dc.subject.es_PE.fl_str_mv automatic pterygium classification
deep learning system
photograph of anterior segment of the eye
pterygium detection
topic automatic pterygium classification
deep learning system
photograph of anterior segment of the eye
pterygium detection
description This article introduces an innovative mobile solution for Pterygium detection, an eye disease, using a classification model based on the convolutional neural network (CNN) architecture ResNext50 in images of the anterior segment of the eye. Four models (ResNext50, ResNet50, MobileNet v2, and DenseNet201) were used for the analysis, with ResNext50 standing out for its high accuracy and diagnostic efficiency. The research, focused on applications for ophthalmological medical centers in Lima, Peru, explains the process of development and integration of the ResNext50 model into a mobile application. The results indicate the high effectiveness of the system, highlighting its high precision, recall, and specificity, which exceed 85%, thus showing its potential as an advanced diagnostic tool in ophthalmology. This system represents a significant tool in ophthalmology, especially for areas with limited access to specialists, offering a rapid and reliable diagnosis of Pterygium. The study also addresses the technical challenges and clinical implications of implementing this technology in a real-world context
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-10-05T09:37:04Z
dc.date.available.none.fl_str_mv 2024-10-05T09:37:04Z
dc.date.issued.fl_str_mv 2024-05-21
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.doi.none.fl_str_mv 10.3991/ijoe.v20i08.48421
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10757/676000
dc.identifier.eissn.none.fl_str_mv 26268493
dc.identifier.journal.es_PE.fl_str_mv International journal of online and biomedical engineering
dc.identifier.eid.none.fl_str_mv 2-s2.0-85195135299
dc.identifier.scopusid.none.fl_str_mv SCOPUS_ID:85195135299
identifier_str_mv 10.3991/ijoe.v20i08.48421
26268493
International journal of online and biomedical engineering
2-s2.0-85195135299
SCOPUS_ID:85195135299
url http://hdl.handle.net/10757/676000
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.es_PE.fl_str_mv application/html
dc.publisher.es_PE.fl_str_mv International Federation of Engineering Education Societies (IFEES)
dc.source.none.fl_str_mv reponame:UPC-Institucional
instname:Universidad Peruana de Ciencias Aplicadas
instacron:UPC
instname_str Universidad Peruana de Ciencias Aplicadas
instacron_str UPC
institution UPC
reponame_str UPC-Institucional
collection UPC-Institucional
dc.source.journaltitle.none.fl_str_mv International journal of online and biomedical engineering
dc.source.volume.none.fl_str_mv 20
dc.source.issue.none.fl_str_mv 8
dc.source.beginpage.none.fl_str_mv 115
dc.source.endpage.none.fl_str_mv 138
bitstream.url.fl_str_mv https://repositorioacademico.upc.edu.pe/bitstream/10757/676000/5/115_Mobile%2bApplication%2bBased%2bon%2bConvolutional%2bNeural%2bNetworks%2bfor%2bPterygium%2bDetection%2bin%2bAnterior%2bSegment%2bEye%2bImages%2bat%2bOphthalmological%2bMedical%2bCenters.pdf.jpg
https://repositorioacademico.upc.edu.pe/bitstream/10757/676000/4/115_Mobile%2bApplication%2bBased%2bon%2bConvolutional%2bNeural%2bNetworks%2bfor%2bPterygium%2bDetection%2bin%2bAnterior%2bSegment%2bEye%2bImages%2bat%2bOphthalmological%2bMedical%2bCenters.pdf.txt
https://repositorioacademico.upc.edu.pe/bitstream/10757/676000/3/license.txt
https://repositorioacademico.upc.edu.pe/bitstream/10757/676000/2/license_rdf
https://repositorioacademico.upc.edu.pe/bitstream/10757/676000/1/115_Mobile%2bApplication%2bBased%2bon%2bConvolutional%2bNeural%2bNetworks%2bfor%2bPterygium%2bDetection%2bin%2bAnterior%2bSegment%2bEye%2bImages%2bat%2bOphthalmological%2bMedical%2bCenters.pdf
bitstream.checksum.fl_str_mv 5a8646b17da84d924e9014e5eda74a37
7baeb40b1330584fe62ae836cffda1b3
8a4605be74aa9ea9d79846c1fba20a33
4460e5956bc1d1639be9ae6146a50347
51bcbb6e961452b4e9c0b3879ca9e3ff
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio académico upc
repository.mail.fl_str_mv upc@openrepository.com
_version_ 1837187181111672832
spelling 56abf241d94c120f21bde7caaab171fa30057b380ac69417994a8e8e1770a60be24300db9010f8c2406b988b289cb0a11e9e3550063dd3802ea6d9a27eeda90d556466c18f4a9f120db1676aab6369c2635374b43300Ticlavilcainche, Edward JordyMoreno-Lozano, Maria IsabelCastañeda, PedroWong-Durand, SandraOñate-Andino, Alejandra2024-10-05T09:37:04Z2024-10-05T09:37:04Z2024-05-2110.3991/ijoe.v20i08.48421http://hdl.handle.net/10757/67600026268493International journal of online and biomedical engineering2-s2.0-85195135299SCOPUS_ID:85195135299This article introduces an innovative mobile solution for Pterygium detection, an eye disease, using a classification model based on the convolutional neural network (CNN) architecture ResNext50 in images of the anterior segment of the eye. Four models (ResNext50, ResNet50, MobileNet v2, and DenseNet201) were used for the analysis, with ResNext50 standing out for its high accuracy and diagnostic efficiency. The research, focused on applications for ophthalmological medical centers in Lima, Peru, explains the process of development and integration of the ResNext50 model into a mobile application. The results indicate the high effectiveness of the system, highlighting its high precision, recall, and specificity, which exceed 85%, thus showing its potential as an advanced diagnostic tool in ophthalmology. This system represents a significant tool in ophthalmology, especially for areas with limited access to specialists, offering a rapid and reliable diagnosis of Pterygium. The study also addresses the technical challenges and clinical implications of implementing this technology in a real-world contextapplication/htmlengInternational Federation of Engineering Education Societies (IFEES)info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/automatic pterygium classificationdeep learning systemphotograph of anterior segment of the eyepterygium detectionMobile Application Based on Convolutional Neural Networks for Pterygium Detection in Anterior Segment Eye Images at Ophthalmological Medical Centersinfo:eu-repo/semantics/articleInternational journal of online and biomedical engineering208115138reponame:UPC-Institucionalinstname:Universidad Peruana de Ciencias Aplicadasinstacron:UPC2024-10-05T09:37:06ZTHUMBNAIL115_Mobile+Application+Based+on+Convolutional+Neural+Networks+for+Pterygium+Detection+in+Anterior+Segment+Eye+Images+at+Ophthalmological+Medical+Centers.pdf.jpg115_Mobile+Application+Based+on+Convolutional+Neural+Networks+for+Pterygium+Detection+in+Anterior+Segment+Eye+Images+at+Ophthalmological+Medical+Centers.pdf.jpgGenerated Thumbnailimage/jpeg116645https://repositorioacademico.upc.edu.pe/bitstream/10757/676000/5/115_Mobile%2bApplication%2bBased%2bon%2bConvolutional%2bNeural%2bNetworks%2bfor%2bPterygium%2bDetection%2bin%2bAnterior%2bSegment%2bEye%2bImages%2bat%2bOphthalmological%2bMedical%2bCenters.pdf.jpg5a8646b17da84d924e9014e5eda74a37MD55falseTEXT115_Mobile+Application+Based+on+Convolutional+Neural+Networks+for+Pterygium+Detection+in+Anterior+Segment+Eye+Images+at+Ophthalmological+Medical+Centers.pdf.txt115_Mobile+Application+Based+on+Convolutional+Neural+Networks+for+Pterygium+Detection+in+Anterior+Segment+Eye+Images+at+Ophthalmological+Medical+Centers.pdf.txtExtracted texttext/plain62096https://repositorioacademico.upc.edu.pe/bitstream/10757/676000/4/115_Mobile%2bApplication%2bBased%2bon%2bConvolutional%2bNeural%2bNetworks%2bfor%2bPterygium%2bDetection%2bin%2bAnterior%2bSegment%2bEye%2bImages%2bat%2bOphthalmological%2bMedical%2bCenters.pdf.txt7baeb40b1330584fe62ae836cffda1b3MD54falseLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorioacademico.upc.edu.pe/bitstream/10757/676000/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53falseCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorioacademico.upc.edu.pe/bitstream/10757/676000/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52falseORIGINAL115_Mobile+Application+Based+on+Convolutional+Neural+Networks+for+Pterygium+Detection+in+Anterior+Segment+Eye+Images+at+Ophthalmological+Medical+Centers.pdf115_Mobile+Application+Based+on+Convolutional+Neural+Networks+for+Pterygium+Detection+in+Anterior+Segment+Eye+Images+at+Ophthalmological+Medical+Centers.pdfapplication/pdf2277419https://repositorioacademico.upc.edu.pe/bitstream/10757/676000/1/115_Mobile%2bApplication%2bBased%2bon%2bConvolutional%2bNeural%2bNetworks%2bfor%2bPterygium%2bDetection%2bin%2bAnterior%2bSegment%2bEye%2bImages%2bat%2bOphthalmological%2bMedical%2bCenters.pdf51bcbb6e961452b4e9c0b3879ca9e3ffMD51true10757/676000oai:repositorioacademico.upc.edu.pe:10757/6760002024-10-06 04:03:53.177Repositorio académico upcupc@openrepository.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.927214
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).