ERP System Based on Process Mining for Improving Logistic Management Efficiency in Small and Medium-Sized Enterprises in the Industrial Sector

Descripción del Articulo

The logistics process in small and medium-sized enterprises (SMEs) in the industrial sector is often exposed to various challenges, such as information loss, redundant activities, prolonged waiting times, and delivery failures, due to poor logistics management. In response to this problem, the imple...

Descripción completa

Detalles Bibliográficos
Autores: Rojas, Kevin J., Dávila, Emerson M., Castañeda, Pedro
Formato: artículo
Fecha de Publicación:2024
Institución:Universidad Peruana de Ciencias Aplicadas
Repositorio:UPC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorioacademico.upc.edu.pe:10757/676236
Enlace del recurso:http://hdl.handle.net/10757/676236
Nivel de acceso:acceso embargado
Materia:ERP
Logistics
Process
Process Mining
SMEs
Descripción
Sumario:The logistics process in small and medium-sized enterprises (SMEs) in the industrial sector is often exposed to various challenges, such as information loss, redundant activities, prolonged waiting times, and delivery failures, due to poor logistics management. In response to this problem, the implementation of an ERP system based on Process Mining is proposed to enhance the management of the logistics process in SMEs within the industrial sector. This system represents a comprehensive technological solution specifically designed to address logistics inefficiencies and optimize processes in the supply chain of these companies. As part of the evaluation methodology, performance indicators have been established to discuss the results obtained. These indicators have been defined using the Celonis tool, which has been employed for process mining. Findings obtained from the analysis of 30,000 records validate the optimization of the logistics process in companies within this sector, demonstrating a significant reduction in the percentage of key indicators for undesired activities in the logistics process.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).