The Prediction of Hydrometeorology Variables Using the Method of Recurrent Neuronal Networks
Descripción del Articulo
This scientific article evaluates the prediction of hydrometeorological variables, which refer to temperature, precipitation, and flow. The applied methodology is long-term bidirectional recurrent neural networks (BRNN) in a series of 40 years of study for a better perspective on the climatological...
| Autores: | , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2023 |
| Institución: | Universidad Peruana de Ciencias Aplicadas |
| Repositorio: | UPC-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorioacademico.upc.edu.pe:10757/668740 |
| Enlace del recurso: | http://hdl.handle.net/10757/668740 |
| Nivel de acceso: | acceso embargado |
| Materia: | Flow prediction Lima metropolitana Long-term bidirectional recurrent neural network (BRNN) Precipitation prediction Temperature prediction Hydrometeorological variables Temperature, precipitation, and flow Bidirectional recurrent neural networks (BRNN) Metropolitan Lima LSTM models Mean square error (MSE) Root mean square error (RMSE) Nash Sutcliffe efficiency ratio (NSE) Average temperatures Prediction performance |
| id |
UUPC_2144a937883cb766371693bd3c23b754 |
|---|---|
| oai_identifier_str |
oai:repositorioacademico.upc.edu.pe:10757/668740 |
| network_acronym_str |
UUPC |
| network_name_str |
UPC-Institucional |
| repository_id_str |
2670 |
| dc.title.es_PE.fl_str_mv |
The Prediction of Hydrometeorology Variables Using the Method of Recurrent Neuronal Networks |
| title |
The Prediction of Hydrometeorology Variables Using the Method of Recurrent Neuronal Networks |
| spellingShingle |
The Prediction of Hydrometeorology Variables Using the Method of Recurrent Neuronal Networks Díaz León, J. A. Flow prediction Lima metropolitana Long-term bidirectional recurrent neural network (BRNN) Precipitation prediction Temperature prediction Hydrometeorological variables Temperature, precipitation, and flow Bidirectional recurrent neural networks (BRNN) Metropolitan Lima LSTM models Mean square error (MSE) Root mean square error (RMSE) Nash Sutcliffe efficiency ratio (NSE) Average temperatures Prediction performance |
| title_short |
The Prediction of Hydrometeorology Variables Using the Method of Recurrent Neuronal Networks |
| title_full |
The Prediction of Hydrometeorology Variables Using the Method of Recurrent Neuronal Networks |
| title_fullStr |
The Prediction of Hydrometeorology Variables Using the Method of Recurrent Neuronal Networks |
| title_full_unstemmed |
The Prediction of Hydrometeorology Variables Using the Method of Recurrent Neuronal Networks |
| title_sort |
The Prediction of Hydrometeorology Variables Using the Method of Recurrent Neuronal Networks |
| author |
Díaz León, J. A. |
| author_facet |
Díaz León, J. A. Olarte Escobar, M. A. Jara García, M. |
| author_role |
author |
| author2 |
Olarte Escobar, M. A. Jara García, M. |
| author2_role |
author author |
| dc.contributor.author.fl_str_mv |
Díaz León, J. A. Olarte Escobar, M. A. Jara García, M. |
| dc.subject.es_PE.fl_str_mv |
Flow prediction Lima metropolitana Long-term bidirectional recurrent neural network (BRNN) Precipitation prediction Temperature prediction Hydrometeorological variables Temperature, precipitation, and flow Bidirectional recurrent neural networks (BRNN) Metropolitan Lima LSTM models Mean square error (MSE) Root mean square error (RMSE) Nash Sutcliffe efficiency ratio (NSE) Average temperatures Prediction performance |
| topic |
Flow prediction Lima metropolitana Long-term bidirectional recurrent neural network (BRNN) Precipitation prediction Temperature prediction Hydrometeorological variables Temperature, precipitation, and flow Bidirectional recurrent neural networks (BRNN) Metropolitan Lima LSTM models Mean square error (MSE) Root mean square error (RMSE) Nash Sutcliffe efficiency ratio (NSE) Average temperatures Prediction performance |
| description |
This scientific article evaluates the prediction of hydrometeorological variables, which refer to temperature, precipitation, and flow. The applied methodology is long-term bidirectional recurrent neural networks (BRNN) in a series of 40 years of study for a better perspective on the climatological conditions in Metropolitan Lima until the year 2050. The BRNN model is formed by a single series of past observations, which means that the model analyzes one variable simultaneously to project the next value in the sequence, and unlike other LSTM models, the bidirectional model can model complex and long-time series of sequences efficiently. The purpose of the model is to divide the neurons of a regular RNN into 2 directions, one of them is for the positive time direction (forward states), and one is for the negative time direction (reverse states). In addition, mean square error (MSE), root mean square error (RMSE), and Nash Sutcliffe efficiency ratio (NSE) were used as error metrics to assess prediction performance. Regarding the results, the prediction of average temperatures tends to increase between the ranges of 0.30–0.90 °C with estimated maximum temperatures up to 27 °C. |
| publishDate |
2023 |
| dc.date.accessioned.none.fl_str_mv |
2023-09-25T14:18:49Z |
| dc.date.available.none.fl_str_mv |
2023-09-25T14:18:49Z |
| dc.date.issued.fl_str_mv |
2023-01-01 |
| dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| dc.identifier.issn.none.fl_str_mv |
23662557 |
| dc.identifier.doi.none.fl_str_mv |
10.1007/978-981-99-1919-2_2 |
| dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10757/668740 |
| dc.identifier.eissn.none.fl_str_mv |
23662565 |
| dc.identifier.journal.es_PE.fl_str_mv |
Lecture Notes in Civil Engineering |
| dc.identifier.eid.none.fl_str_mv |
2-s2.0-85163288839 |
| dc.identifier.scopusid.none.fl_str_mv |
SCOPUS_ID:85163288839 |
| dc.identifier.isni.none.fl_str_mv |
0000 0001 2196 144X |
| identifier_str_mv |
23662557 10.1007/978-981-99-1919-2_2 23662565 Lecture Notes in Civil Engineering 2-s2.0-85163288839 SCOPUS_ID:85163288839 0000 0001 2196 144X |
| url |
http://hdl.handle.net/10757/668740 |
| dc.language.iso.es_PE.fl_str_mv |
eng |
| language |
eng |
| dc.relation.url.es_PE.fl_str_mv |
https://link.springer.com/chapter/10.1007/978-981-99-1919-2_2 |
| dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
| eu_rights_str_mv |
embargoedAccess |
| dc.format.es_PE.fl_str_mv |
application/html |
| dc.publisher.es_PE.fl_str_mv |
Springer Science and Business Media Deutschland GmbH |
| dc.source.none.fl_str_mv |
reponame:UPC-Institucional instname:Universidad Peruana de Ciencias Aplicadas instacron:UPC |
| instname_str |
Universidad Peruana de Ciencias Aplicadas |
| instacron_str |
UPC |
| institution |
UPC |
| reponame_str |
UPC-Institucional |
| collection |
UPC-Institucional |
| dc.source.journaltitle.none.fl_str_mv |
Lecture Notes in Civil Engineering |
| dc.source.volume.none.fl_str_mv |
341 LNCE |
| dc.source.beginpage.none.fl_str_mv |
15 |
| dc.source.endpage.none.fl_str_mv |
32 |
| bitstream.url.fl_str_mv |
https://repositorioacademico.upc.edu.pe/bitstream/10757/668740/1/license.txt |
| bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
| repository.name.fl_str_mv |
Repositorio académico upc |
| repository.mail.fl_str_mv |
upc@openrepository.com |
| _version_ |
1846065942683975680 |
| spelling |
f64c506c18a2361682ced3284b9a1f5230050b1580f590dd492135b7f28537adc62300be5b786b6731849c7e5fa19061ee1dd1300Díaz León, J. A.Olarte Escobar, M. A.Jara García, M.2023-09-25T14:18:49Z2023-09-25T14:18:49Z2023-01-012366255710.1007/978-981-99-1919-2_2http://hdl.handle.net/10757/66874023662565Lecture Notes in Civil Engineering2-s2.0-85163288839SCOPUS_ID:851632888390000 0001 2196 144XThis scientific article evaluates the prediction of hydrometeorological variables, which refer to temperature, precipitation, and flow. The applied methodology is long-term bidirectional recurrent neural networks (BRNN) in a series of 40 years of study for a better perspective on the climatological conditions in Metropolitan Lima until the year 2050. The BRNN model is formed by a single series of past observations, which means that the model analyzes one variable simultaneously to project the next value in the sequence, and unlike other LSTM models, the bidirectional model can model complex and long-time series of sequences efficiently. The purpose of the model is to divide the neurons of a regular RNN into 2 directions, one of them is for the positive time direction (forward states), and one is for the negative time direction (reverse states). In addition, mean square error (MSE), root mean square error (RMSE), and Nash Sutcliffe efficiency ratio (NSE) were used as error metrics to assess prediction performance. Regarding the results, the prediction of average temperatures tends to increase between the ranges of 0.30–0.90 °C with estimated maximum temperatures up to 27 °C.ODS 13: Acción por el ClimaODS 11: Ciudades y Comunidades SosteniblesODS 9: Industria, Innovación e Infraestructuraapplication/htmlengSpringer Science and Business Media Deutschland GmbHhttps://link.springer.com/chapter/10.1007/978-981-99-1919-2_2info:eu-repo/semantics/embargoedAccessFlow predictionLima metropolitanaLong-term bidirectional recurrent neural network (BRNN)Precipitation predictionTemperature predictionHydrometeorological variablesTemperature, precipitation, and flowBidirectional recurrent neural networks (BRNN)Metropolitan LimaLSTM modelsMean square error (MSE)Root mean square error (RMSE)Nash Sutcliffe efficiency ratio (NSE)Average temperaturesPrediction performanceThe Prediction of Hydrometeorology Variables Using the Method of Recurrent Neuronal Networksinfo:eu-repo/semantics/articleLecture Notes in Civil Engineering341 LNCE1532reponame:UPC-Institucionalinstname:Universidad Peruana de Ciencias Aplicadasinstacron:UPCLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorioacademico.upc.edu.pe/bitstream/10757/668740/1/license.txt8a4605be74aa9ea9d79846c1fba20a33MD51false10757/668740oai:repositorioacademico.upc.edu.pe:10757/6687402024-07-27 18:08:17.358Repositorio académico upcupc@openrepository.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
| score |
13.936249 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).