The Prediction of Hydrometeorology Variables Using the Method of Recurrent Neuronal Networks

Descripción del Articulo

This scientific article evaluates the prediction of hydrometeorological variables, which refer to temperature, precipitation, and flow. The applied methodology is long-term bidirectional recurrent neural networks (BRNN) in a series of 40 years of study for a better perspective on the climatological...

Descripción completa

Detalles Bibliográficos
Autores: Díaz León, J. A., Olarte Escobar, M. A., Jara García, M.
Formato: artículo
Fecha de Publicación:2023
Institución:Universidad Peruana de Ciencias Aplicadas
Repositorio:UPC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorioacademico.upc.edu.pe:10757/668740
Enlace del recurso:http://hdl.handle.net/10757/668740
Nivel de acceso:acceso embargado
Materia:Flow prediction
Lima metropolitana
Long-term bidirectional recurrent neural network (BRNN)
Precipitation prediction
Temperature prediction
Hydrometeorological variables
Temperature, precipitation, and flow
Bidirectional recurrent neural networks (BRNN)
Metropolitan Lima
LSTM models
Mean square error (MSE)
Root mean square error (RMSE)
Nash Sutcliffe efficiency ratio (NSE)
Average temperatures
Prediction performance
id UUPC_2144a937883cb766371693bd3c23b754
oai_identifier_str oai:repositorioacademico.upc.edu.pe:10757/668740
network_acronym_str UUPC
network_name_str UPC-Institucional
repository_id_str 2670
dc.title.es_PE.fl_str_mv The Prediction of Hydrometeorology Variables Using the Method of Recurrent Neuronal Networks
title The Prediction of Hydrometeorology Variables Using the Method of Recurrent Neuronal Networks
spellingShingle The Prediction of Hydrometeorology Variables Using the Method of Recurrent Neuronal Networks
Díaz León, J. A.
Flow prediction
Lima metropolitana
Long-term bidirectional recurrent neural network (BRNN)
Precipitation prediction
Temperature prediction
Hydrometeorological variables
Temperature, precipitation, and flow
Bidirectional recurrent neural networks (BRNN)
Metropolitan Lima
LSTM models
Mean square error (MSE)
Root mean square error (RMSE)
Nash Sutcliffe efficiency ratio (NSE)
Average temperatures
Prediction performance
title_short The Prediction of Hydrometeorology Variables Using the Method of Recurrent Neuronal Networks
title_full The Prediction of Hydrometeorology Variables Using the Method of Recurrent Neuronal Networks
title_fullStr The Prediction of Hydrometeorology Variables Using the Method of Recurrent Neuronal Networks
title_full_unstemmed The Prediction of Hydrometeorology Variables Using the Method of Recurrent Neuronal Networks
title_sort The Prediction of Hydrometeorology Variables Using the Method of Recurrent Neuronal Networks
author Díaz León, J. A.
author_facet Díaz León, J. A.
Olarte Escobar, M. A.
Jara García, M.
author_role author
author2 Olarte Escobar, M. A.
Jara García, M.
author2_role author
author
dc.contributor.author.fl_str_mv Díaz León, J. A.
Olarte Escobar, M. A.
Jara García, M.
dc.subject.es_PE.fl_str_mv Flow prediction
Lima metropolitana
Long-term bidirectional recurrent neural network (BRNN)
Precipitation prediction
Temperature prediction
Hydrometeorological variables
Temperature, precipitation, and flow
Bidirectional recurrent neural networks (BRNN)
Metropolitan Lima
LSTM models
Mean square error (MSE)
Root mean square error (RMSE)
Nash Sutcliffe efficiency ratio (NSE)
Average temperatures
Prediction performance
topic Flow prediction
Lima metropolitana
Long-term bidirectional recurrent neural network (BRNN)
Precipitation prediction
Temperature prediction
Hydrometeorological variables
Temperature, precipitation, and flow
Bidirectional recurrent neural networks (BRNN)
Metropolitan Lima
LSTM models
Mean square error (MSE)
Root mean square error (RMSE)
Nash Sutcliffe efficiency ratio (NSE)
Average temperatures
Prediction performance
description This scientific article evaluates the prediction of hydrometeorological variables, which refer to temperature, precipitation, and flow. The applied methodology is long-term bidirectional recurrent neural networks (BRNN) in a series of 40 years of study for a better perspective on the climatological conditions in Metropolitan Lima until the year 2050. The BRNN model is formed by a single series of past observations, which means that the model analyzes one variable simultaneously to project the next value in the sequence, and unlike other LSTM models, the bidirectional model can model complex and long-time series of sequences efficiently. The purpose of the model is to divide the neurons of a regular RNN into 2 directions, one of them is for the positive time direction (forward states), and one is for the negative time direction (reverse states). In addition, mean square error (MSE), root mean square error (RMSE), and Nash Sutcliffe efficiency ratio (NSE) were used as error metrics to assess prediction performance. Regarding the results, the prediction of average temperatures tends to increase between the ranges of 0.30–0.90 °C with estimated maximum temperatures up to 27 °C.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-09-25T14:18:49Z
dc.date.available.none.fl_str_mv 2023-09-25T14:18:49Z
dc.date.issued.fl_str_mv 2023-01-01
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.issn.none.fl_str_mv 23662557
dc.identifier.doi.none.fl_str_mv 10.1007/978-981-99-1919-2_2
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10757/668740
dc.identifier.eissn.none.fl_str_mv 23662565
dc.identifier.journal.es_PE.fl_str_mv Lecture Notes in Civil Engineering
dc.identifier.eid.none.fl_str_mv 2-s2.0-85163288839
dc.identifier.scopusid.none.fl_str_mv SCOPUS_ID:85163288839
dc.identifier.isni.none.fl_str_mv 0000 0001 2196 144X
identifier_str_mv 23662557
10.1007/978-981-99-1919-2_2
23662565
Lecture Notes in Civil Engineering
2-s2.0-85163288839
SCOPUS_ID:85163288839
0000 0001 2196 144X
url http://hdl.handle.net/10757/668740
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.relation.url.es_PE.fl_str_mv https://link.springer.com/chapter/10.1007/978-981-99-1919-2_2
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/embargoedAccess
eu_rights_str_mv embargoedAccess
dc.format.es_PE.fl_str_mv application/html
dc.publisher.es_PE.fl_str_mv Springer Science and Business Media Deutschland GmbH
dc.source.none.fl_str_mv reponame:UPC-Institucional
instname:Universidad Peruana de Ciencias Aplicadas
instacron:UPC
instname_str Universidad Peruana de Ciencias Aplicadas
instacron_str UPC
institution UPC
reponame_str UPC-Institucional
collection UPC-Institucional
dc.source.journaltitle.none.fl_str_mv Lecture Notes in Civil Engineering
dc.source.volume.none.fl_str_mv 341 LNCE
dc.source.beginpage.none.fl_str_mv 15
dc.source.endpage.none.fl_str_mv 32
bitstream.url.fl_str_mv https://repositorioacademico.upc.edu.pe/bitstream/10757/668740/1/license.txt
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio académico upc
repository.mail.fl_str_mv upc@openrepository.com
_version_ 1846065942683975680
spelling f64c506c18a2361682ced3284b9a1f5230050b1580f590dd492135b7f28537adc62300be5b786b6731849c7e5fa19061ee1dd1300Díaz León, J. A.Olarte Escobar, M. A.Jara García, M.2023-09-25T14:18:49Z2023-09-25T14:18:49Z2023-01-012366255710.1007/978-981-99-1919-2_2http://hdl.handle.net/10757/66874023662565Lecture Notes in Civil Engineering2-s2.0-85163288839SCOPUS_ID:851632888390000 0001 2196 144XThis scientific article evaluates the prediction of hydrometeorological variables, which refer to temperature, precipitation, and flow. The applied methodology is long-term bidirectional recurrent neural networks (BRNN) in a series of 40 years of study for a better perspective on the climatological conditions in Metropolitan Lima until the year 2050. The BRNN model is formed by a single series of past observations, which means that the model analyzes one variable simultaneously to project the next value in the sequence, and unlike other LSTM models, the bidirectional model can model complex and long-time series of sequences efficiently. The purpose of the model is to divide the neurons of a regular RNN into 2 directions, one of them is for the positive time direction (forward states), and one is for the negative time direction (reverse states). In addition, mean square error (MSE), root mean square error (RMSE), and Nash Sutcliffe efficiency ratio (NSE) were used as error metrics to assess prediction performance. Regarding the results, the prediction of average temperatures tends to increase between the ranges of 0.30–0.90 °C with estimated maximum temperatures up to 27 °C.ODS 13: Acción por el ClimaODS 11: Ciudades y Comunidades SosteniblesODS 9: Industria, Innovación e Infraestructuraapplication/htmlengSpringer Science and Business Media Deutschland GmbHhttps://link.springer.com/chapter/10.1007/978-981-99-1919-2_2info:eu-repo/semantics/embargoedAccessFlow predictionLima metropolitanaLong-term bidirectional recurrent neural network (BRNN)Precipitation predictionTemperature predictionHydrometeorological variablesTemperature, precipitation, and flowBidirectional recurrent neural networks (BRNN)Metropolitan LimaLSTM modelsMean square error (MSE)Root mean square error (RMSE)Nash Sutcliffe efficiency ratio (NSE)Average temperaturesPrediction performanceThe Prediction of Hydrometeorology Variables Using the Method of Recurrent Neuronal Networksinfo:eu-repo/semantics/articleLecture Notes in Civil Engineering341 LNCE1532reponame:UPC-Institucionalinstname:Universidad Peruana de Ciencias Aplicadasinstacron:UPCLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorioacademico.upc.edu.pe/bitstream/10757/668740/1/license.txt8a4605be74aa9ea9d79846c1fba20a33MD51false10757/668740oai:repositorioacademico.upc.edu.pe:10757/6687402024-07-27 18:08:17.358Repositorio académico upcupc@openrepository.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.936249
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).