SCAT Model Based on Bayesian Networks for Lost-Time Accident Prevention and Rate Reduction in Peruvian Mining Operations
Descripción del Articulo
El texto completo de este trabajo no está disponible en el Repositorio Académico UPC por restricciones de la casa editorial donde ha sido publicado.
Autores: | , , , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2020 |
Institución: | Universidad Peruana de Ciencias Aplicadas |
Repositorio: | UPC-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorioacademico.upc.edu.pe:10757/656168 |
Enlace del recurso: | http://hdl.handle.net/10757/656168 |
Nivel de acceso: | acceso embargado |
Materia: | Accident Bayesian net-work Mining Peruvian Prevention |
id |
UUPC_19c4c9b34ff62e5f66b239ef4bc09e49 |
---|---|
oai_identifier_str |
oai:repositorioacademico.upc.edu.pe:10757/656168 |
network_acronym_str |
UUPC |
network_name_str |
UPC-Institucional |
repository_id_str |
2670 |
dc.title.en_US.fl_str_mv |
SCAT Model Based on Bayesian Networks for Lost-Time Accident Prevention and Rate Reduction in Peruvian Mining Operations |
title |
SCAT Model Based on Bayesian Networks for Lost-Time Accident Prevention and Rate Reduction in Peruvian Mining Operations |
spellingShingle |
SCAT Model Based on Bayesian Networks for Lost-Time Accident Prevention and Rate Reduction in Peruvian Mining Operations Ziegler-Barranco, Ana Accident Bayesian net-work Mining Peruvian Prevention |
title_short |
SCAT Model Based on Bayesian Networks for Lost-Time Accident Prevention and Rate Reduction in Peruvian Mining Operations |
title_full |
SCAT Model Based on Bayesian Networks for Lost-Time Accident Prevention and Rate Reduction in Peruvian Mining Operations |
title_fullStr |
SCAT Model Based on Bayesian Networks for Lost-Time Accident Prevention and Rate Reduction in Peruvian Mining Operations |
title_full_unstemmed |
SCAT Model Based on Bayesian Networks for Lost-Time Accident Prevention and Rate Reduction in Peruvian Mining Operations |
title_sort |
SCAT Model Based on Bayesian Networks for Lost-Time Accident Prevention and Rate Reduction in Peruvian Mining Operations |
author |
Ziegler-Barranco, Ana |
author_facet |
Ziegler-Barranco, Ana Mera-Barco, Luis Aramburu-Rojas, Vidal Raymundo, Carlos Mamani-Macedo, Nestor Dominguez, Francisco |
author_role |
author |
author2 |
Mera-Barco, Luis Aramburu-Rojas, Vidal Raymundo, Carlos Mamani-Macedo, Nestor Dominguez, Francisco |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
Ziegler-Barranco, Ana Mera-Barco, Luis Aramburu-Rojas, Vidal Raymundo, Carlos Mamani-Macedo, Nestor Dominguez, Francisco |
dc.subject.en_US.fl_str_mv |
Accident Bayesian net-work Mining Peruvian Prevention |
topic |
Accident Bayesian net-work Mining Peruvian Prevention |
description |
El texto completo de este trabajo no está disponible en el Repositorio Académico UPC por restricciones de la casa editorial donde ha sido publicado. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2021-05-27T12:30:06Z |
dc.date.available.none.fl_str_mv |
2021-05-27T12:30:06Z |
dc.date.issued.fl_str_mv |
2020-01-01 |
dc.type.en_US.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
dc.identifier.issn.none.fl_str_mv |
21945357 |
dc.identifier.doi.none.fl_str_mv |
10.1007/978-3-030-50791-6_45 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10757/656168 |
dc.identifier.eissn.none.fl_str_mv |
21945365 |
dc.identifier.journal.en_US.fl_str_mv |
Advances in Intelligent Systems and Computing |
dc.identifier.eid.none.fl_str_mv |
2-s2.0-85088231547 |
dc.identifier.scopusid.none.fl_str_mv |
SCOPUS_ID:85088231547 |
dc.identifier.isni.none.fl_str_mv |
0000 0001 2196 144X |
identifier_str_mv |
21945357 10.1007/978-3-030-50791-6_45 21945365 Advances in Intelligent Systems and Computing 2-s2.0-85088231547 SCOPUS_ID:85088231547 0000 0001 2196 144X |
url |
http://hdl.handle.net/10757/656168 |
dc.language.iso.en_US.fl_str_mv |
eng |
language |
eng |
dc.relation.url.en_US.fl_str_mv |
https://www.springerprofessional.de/en/scat-model-based-on-bayesian-networks-for-lost-time-accident-pre/18134120 |
dc.rights.en_US.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
eu_rights_str_mv |
embargoedAccess |
dc.format.en_US.fl_str_mv |
application/html |
dc.publisher.en_US.fl_str_mv |
Springer |
dc.source.es_PE.fl_str_mv |
Universidad Peruana de Ciencias Aplicadas (UPC) Repositorio Académico - UPC |
dc.source.none.fl_str_mv |
reponame:UPC-Institucional instname:Universidad Peruana de Ciencias Aplicadas instacron:UPC |
instname_str |
Universidad Peruana de Ciencias Aplicadas |
instacron_str |
UPC |
institution |
UPC |
reponame_str |
UPC-Institucional |
collection |
UPC-Institucional |
dc.source.journaltitle.none.fl_str_mv |
Advances in Intelligent Systems and Computing |
dc.source.volume.none.fl_str_mv |
1209 AISC |
dc.source.beginpage.none.fl_str_mv |
350 |
dc.source.endpage.none.fl_str_mv |
358 |
bitstream.url.fl_str_mv |
https://repositorioacademico.upc.edu.pe/bitstream/10757/656168/1/license.txt |
bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio académico upc |
repository.mail.fl_str_mv |
upc@openrepository.com |
_version_ |
1846065760194002944 |
spelling |
fe5bfc614d0cde0e840b0f1649575a9d30053b620bf5c5c39f3d0db1c808b09eaf63003c2c18274ebf15d91ddeec580cbec89df1b29165990ab4ce165cbf28f5e4ccd95003c4929de31ab03204ce4b92da8cfadf8500bca061da163b707885b99dc247d3d44a500Ziegler-Barranco, AnaMera-Barco, LuisAramburu-Rojas, VidalRaymundo, CarlosMamani-Macedo, NestorDominguez, Francisco2021-05-27T12:30:06Z2021-05-27T12:30:06Z2020-01-012194535710.1007/978-3-030-50791-6_45http://hdl.handle.net/10757/65616821945365Advances in Intelligent Systems and Computing2-s2.0-85088231547SCOPUS_ID:850882315470000 0001 2196 144XEl texto completo de este trabajo no está disponible en el Repositorio Académico UPC por restricciones de la casa editorial donde ha sido publicado.Several factors affect the activities of the mining industry. For example, accident rates are critical because they affect company ratings in the stock market (Standard & Poors). Considering that the corporate image is directly related to its stakeholders, this study conducts an accident analysis using quantitative and qualitative methods. In this way, the contingency rate is controlled, mitigated, and prevented while serving the needs) of the stakeholders. The Bayesian network method contributes to decision-making through a set of variables and the dependency relationships between them, establishing an earlier probability of unknown variables. Bayesian models have different applications, such as diagnosis, classification, and decision, and establish relationships among variables and cause–effect links. This study uses Bayesian inference to identify the various patterns that influence operator accident rates at a contractor mining company, and therefore, study and assess the possible differences in its future operations.application/htmlengSpringerhttps://www.springerprofessional.de/en/scat-model-based-on-bayesian-networks-for-lost-time-accident-pre/18134120info:eu-repo/semantics/embargoedAccessUniversidad Peruana de Ciencias Aplicadas (UPC)Repositorio Académico - UPCAdvances in Intelligent Systems and Computing1209 AISC350358reponame:UPC-Institucionalinstname:Universidad Peruana de Ciencias Aplicadasinstacron:UPCAccidentBayesian net-workMiningPeruvianPreventionSCAT Model Based on Bayesian Networks for Lost-Time Accident Prevention and Rate Reduction in Peruvian Mining Operationsinfo:eu-repo/semantics/articleLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorioacademico.upc.edu.pe/bitstream/10757/656168/1/license.txt8a4605be74aa9ea9d79846c1fba20a33MD51false10757/656168oai:repositorioacademico.upc.edu.pe:10757/6561682021-05-27 12:30:06.823Repositorio académico upcupc@openrepository.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
score |
13.871978 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).