Modelo Predictivo para el diagnóstico de la Diabetes Mellitus Tipo 2 soportado por SAP Predictive Analytics
Descripción del Articulo
El presente proyecto se centra en el desarrollo de un modelo predictivo que permite pronosticar el diagnóstico de la diabetes mellitus tipo 2, siendo soportado por la herramienta SAP Predictive Analytics. Tiene como propósito el definir un modelo predictivo cuya implementación permita la optimizació...
Autores: | , |
---|---|
Formato: | tesis de grado |
Fecha de Publicación: | 2018 |
Institución: | Universidad Peruana de Ciencias Aplicadas |
Repositorio: | UPC-Institucional |
Lenguaje: | español |
OAI Identifier: | oai:repositorioacademico.upc.edu.pe:10757/624417 |
Enlace del recurso: | http://hdl.handle.net/10757/624417 |
Nivel de acceso: | acceso abierto |
Materia: | Administración de proyectos informáticos Servicios de salud Auto classification algorithm Diabetes mellitus Predictive analytics Diagnosis Optimization Ingeniería de Sistemas de Información |
Sumario: | El presente proyecto se centra en el desarrollo de un modelo predictivo que permite pronosticar el diagnóstico de la diabetes mellitus tipo 2, siendo soportado por la herramienta SAP Predictive Analytics. Tiene como propósito el definir un modelo predictivo cuya implementación permita la optimización del proceso de diagnóstico de la Diabetes Mellitus tipo 2, además permitiendo que el resultado pueda brindar indicios sobre las acciones que una institución prestadora de servicios de cobertura de salud (tanto pública como privada) puede tomar por cada paciente en beneficio del mismo. Para lograr el propósito del proyecto, se ha realizado una investigación donde hemos alineado las 10 metas mundiales planteadas por la Organización Mundial de la Salud (OMS) a las 4 agrupaciones de enfermedades crónicas de mayor impacto económico, con lo que se ha identificado a la diabetes como la enfermedad crónica de mayor impacto para el Perú debido al creciente factor de incidencia en el país, causado principalmente por serias deficiencias en las costumbres diarias de alimentación y ejercicio en la población peruana, además de ser una enfermedad cuya propagación es alta en países en vías de desarrollo como el Perú debido a que no es mitigada adecuadamente por falta de prevención, desconocimiento o por motivos tan diversos como los económicos. Seguidamente, se realiza un benchmarking de herramientas de Predictive Analytics y las capacidades disponibles de las mismas para identificar cuál de ellas brinda el mejor soporte al modelo predictivo planteado, según el contexto identificado. |
---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).