Artificial neural network model to predict student performance using nonpersonal information
Descripción del Articulo
In recent years, artificial intelligence has played an important role in education, wherein one of the most commonly used applications is forecasting students’ academic performance based on personal information such as social status, income, address, etc. This study proposes and develops an artifici...
| Autores: | , , , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2023 |
| Institución: | Universidad Peruana de Ciencias Aplicadas |
| Repositorio: | UPC-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorioacademico.upc.edu.pe:10757/668167 |
| Enlace del recurso: | http://hdl.handle.net/10757/668167 |
| Nivel de acceso: | acceso abierto |
| Materia: | academic performance forecasting neural networks personal data privacy Artificial intelligence Education Student performance forecasting Privacy considerations Artificial neural network model Data from The Open University Number of course attempts Course pass rate Use of virtual materials Model performance metrics |
| id |
UUPC_0a616f12352543d4efa217555be3223e |
|---|---|
| oai_identifier_str |
oai:repositorioacademico.upc.edu.pe:10757/668167 |
| network_acronym_str |
UUPC |
| network_name_str |
UPC-Institucional |
| repository_id_str |
2670 |
| dc.title.es_PE.fl_str_mv |
Artificial neural network model to predict student performance using nonpersonal information |
| title |
Artificial neural network model to predict student performance using nonpersonal information |
| spellingShingle |
Artificial neural network model to predict student performance using nonpersonal information Chavez, Heyul academic performance forecasting neural networks personal data privacy Artificial intelligence Education Student performance forecasting Privacy considerations Artificial neural network model Data from The Open University Number of course attempts Course pass rate Use of virtual materials Model performance metrics |
| title_short |
Artificial neural network model to predict student performance using nonpersonal information |
| title_full |
Artificial neural network model to predict student performance using nonpersonal information |
| title_fullStr |
Artificial neural network model to predict student performance using nonpersonal information |
| title_full_unstemmed |
Artificial neural network model to predict student performance using nonpersonal information |
| title_sort |
Artificial neural network model to predict student performance using nonpersonal information |
| author |
Chavez, Heyul |
| author_facet |
Chavez, Heyul Chavez-Arias, Bill Contreras-Rosas, Sebastian Alvarez-Rodríguez, Jose María Raymundo, Carlos |
| author_role |
author |
| author2 |
Chavez-Arias, Bill Contreras-Rosas, Sebastian Alvarez-Rodríguez, Jose María Raymundo, Carlos |
| author2_role |
author author author author |
| dc.contributor.author.fl_str_mv |
Chavez, Heyul Chavez-Arias, Bill Contreras-Rosas, Sebastian Alvarez-Rodríguez, Jose María Raymundo, Carlos |
| dc.subject.es_PE.fl_str_mv |
academic performance forecasting neural networks personal data privacy Artificial intelligence Education Student performance forecasting Privacy considerations Artificial neural network model Data from The Open University Number of course attempts Course pass rate Use of virtual materials Model performance metrics |
| topic |
academic performance forecasting neural networks personal data privacy Artificial intelligence Education Student performance forecasting Privacy considerations Artificial neural network model Data from The Open University Number of course attempts Course pass rate Use of virtual materials Model performance metrics |
| description |
In recent years, artificial intelligence has played an important role in education, wherein one of the most commonly used applications is forecasting students’ academic performance based on personal information such as social status, income, address, etc. This study proposes and develops an artificial neural network model capable of determining whether a student will pass a certain class without using personal or sensitive information that may compromise student privacy. For model training, we used information regarding 32,000 students collected from The Open University of the United Kingdom, such as number of times they took the course, average number of evaluations, course pass rate, average use of virtual materials per date and number of clicks in virtual classrooms. Attributes selected for the model are as follows: 93.81% accuracy, 94.15% precision, 95.13% recall, and 94.64% F1-score. These results will help the student authorities to take measures to avoid withdrawal and underachievement. |
| publishDate |
2023 |
| dc.date.accessioned.none.fl_str_mv |
2023-07-07T10:52:21Z |
| dc.date.available.none.fl_str_mv |
2023-07-07T10:52:21Z |
| dc.date.issued.fl_str_mv |
2023-02-09 |
| dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| dc.identifier.doi.none.fl_str_mv |
10.3389/feduc.2023.1106679 |
| dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10757/668167 |
| dc.identifier.eissn.none.fl_str_mv |
2504284X |
| dc.identifier.journal.es_PE.fl_str_mv |
Frontiers in Education |
| dc.identifier.eid.none.fl_str_mv |
2-s2.0-85148600255 |
| dc.identifier.scopusid.none.fl_str_mv |
SCOPUS_ID:85148600255 |
| dc.identifier.isni.none.fl_str_mv |
0000 0001 2196 144X |
| identifier_str_mv |
10.3389/feduc.2023.1106679 2504284X Frontiers in Education 2-s2.0-85148600255 SCOPUS_ID:85148600255 0000 0001 2196 144X |
| url |
http://hdl.handle.net/10757/668167 |
| dc.language.iso.es_PE.fl_str_mv |
eng |
| language |
eng |
| dc.relation.url.es_PE.fl_str_mv |
https://www.frontiersin.org/articles/10.3389/feduc.2023.1106679/full |
| dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.*.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International |
| dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ |
| dc.format.es_PE.fl_str_mv |
application/pdf |
| dc.publisher.es_PE.fl_str_mv |
Frontiers Media S.A. |
| dc.source.none.fl_str_mv |
reponame:UPC-Institucional instname:Universidad Peruana de Ciencias Aplicadas instacron:UPC |
| instname_str |
Universidad Peruana de Ciencias Aplicadas |
| instacron_str |
UPC |
| institution |
UPC |
| reponame_str |
UPC-Institucional |
| collection |
UPC-Institucional |
| dc.source.journaltitle.none.fl_str_mv |
Frontiers in Education |
| dc.source.volume.none.fl_str_mv |
8 |
| bitstream.url.fl_str_mv |
https://repositorioacademico.upc.edu.pe/bitstream/10757/668167/5/feduc-08-1106679.pdf.jpg https://repositorioacademico.upc.edu.pe/bitstream/10757/668167/4/feduc-08-1106679.pdf.txt https://repositorioacademico.upc.edu.pe/bitstream/10757/668167/3/license.txt https://repositorioacademico.upc.edu.pe/bitstream/10757/668167/2/license_rdf https://repositorioacademico.upc.edu.pe/bitstream/10757/668167/1/feduc-08-1106679.pdf |
| bitstream.checksum.fl_str_mv |
db33e6e279cb2a694151f4367053e1ae 89c168a9a2b48b2dd6c8500929e2d69f 8a4605be74aa9ea9d79846c1fba20a33 4460e5956bc1d1639be9ae6146a50347 0b4ef760f5a4ace372f055e120706479 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio académico upc |
| repository.mail.fl_str_mv |
upc@openrepository.com |
| _version_ |
1846065926059851776 |
| spelling |
17de09ac39470e349eb92154e24a5337500d5cc99585d867f88ac2dfeba88f6951a300c0e87e6acffc38ba1628928ac07bf700300f2f0d24e26432ebfd235890a1cfbf4a1300f1b29165990ab4ce165cbf28f5e4ccd9500Chavez, HeyulChavez-Arias, BillContreras-Rosas, SebastianAlvarez-Rodríguez, Jose MaríaRaymundo, Carlos2023-07-07T10:52:21Z2023-07-07T10:52:21Z2023-02-0910.3389/feduc.2023.1106679http://hdl.handle.net/10757/6681672504284XFrontiers in Education2-s2.0-85148600255SCOPUS_ID:851486002550000 0001 2196 144XIn recent years, artificial intelligence has played an important role in education, wherein one of the most commonly used applications is forecasting students’ academic performance based on personal information such as social status, income, address, etc. This study proposes and develops an artificial neural network model capable of determining whether a student will pass a certain class without using personal or sensitive information that may compromise student privacy. For model training, we used information regarding 32,000 students collected from The Open University of the United Kingdom, such as number of times they took the course, average number of evaluations, course pass rate, average use of virtual materials per date and number of clicks in virtual classrooms. Attributes selected for the model are as follows: 93.81% accuracy, 94.15% precision, 95.13% recall, and 94.64% F1-score. These results will help the student authorities to take measures to avoid withdrawal and underachievement.Revisión por paresODS 4: Educación de calidadODS 9: Industria, Innovación e InfraestructuraODS 10: Reducción de las Desigualdadesapplication/pdfengFrontiers Media S.A.https://www.frontiersin.org/articles/10.3389/feduc.2023.1106679/fullinfo:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/academic performanceforecastingneural networkspersonal dataprivacyArtificial intelligenceEducationStudent performance forecastingPrivacy considerationsArtificial neural network modelData from The Open UniversityNumber of course attemptsCourse pass rateUse of virtual materialsModel performance metricsArtificial neural network model to predict student performance using nonpersonal informationinfo:eu-repo/semantics/articleFrontiers in Education8reponame:UPC-Institucionalinstname:Universidad Peruana de Ciencias Aplicadasinstacron:UPC2023-07-07T10:52:22ZTHUMBNAILfeduc-08-1106679.pdf.jpgfeduc-08-1106679.pdf.jpgGenerated Thumbnailimage/jpeg109721https://repositorioacademico.upc.edu.pe/bitstream/10757/668167/5/feduc-08-1106679.pdf.jpgdb33e6e279cb2a694151f4367053e1aeMD55falseTEXTfeduc-08-1106679.pdf.txtfeduc-08-1106679.pdf.txtExtracted texttext/plain52208https://repositorioacademico.upc.edu.pe/bitstream/10757/668167/4/feduc-08-1106679.pdf.txt89c168a9a2b48b2dd6c8500929e2d69fMD54falseLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorioacademico.upc.edu.pe/bitstream/10757/668167/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53falseCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorioacademico.upc.edu.pe/bitstream/10757/668167/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52falseORIGINALfeduc-08-1106679.pdffeduc-08-1106679.pdfapplication/pdf1897260https://repositorioacademico.upc.edu.pe/bitstream/10757/668167/1/feduc-08-1106679.pdf0b4ef760f5a4ace372f055e120706479MD51true10757/668167oai:repositorioacademico.upc.edu.pe:10757/6681672024-07-18 23:12:17.542Repositorio académico upcupc@openrepository.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
| score |
13.936249 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).