Artificial neural network model to predict student performance using nonpersonal information

Descripción del Articulo

In recent years, artificial intelligence has played an important role in education, wherein one of the most commonly used applications is forecasting students’ academic performance based on personal information such as social status, income, address, etc. This study proposes and develops an artifici...

Descripción completa

Detalles Bibliográficos
Autores: Chavez, Heyul, Chavez-Arias, Bill, Contreras-Rosas, Sebastian, Alvarez-Rodríguez, Jose María, Raymundo, Carlos
Formato: artículo
Fecha de Publicación:2023
Institución:Universidad Peruana de Ciencias Aplicadas
Repositorio:UPC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorioacademico.upc.edu.pe:10757/668167
Enlace del recurso:http://hdl.handle.net/10757/668167
Nivel de acceso:acceso abierto
Materia:academic performance
forecasting
neural networks
personal data
privacy
Artificial intelligence
Education
Student performance forecasting
Privacy considerations
Artificial neural network model
Data from The Open University
Number of course attempts
Course pass rate
Use of virtual materials
Model performance metrics
id UUPC_0a616f12352543d4efa217555be3223e
oai_identifier_str oai:repositorioacademico.upc.edu.pe:10757/668167
network_acronym_str UUPC
network_name_str UPC-Institucional
repository_id_str 2670
dc.title.es_PE.fl_str_mv Artificial neural network model to predict student performance using nonpersonal information
title Artificial neural network model to predict student performance using nonpersonal information
spellingShingle Artificial neural network model to predict student performance using nonpersonal information
Chavez, Heyul
academic performance
forecasting
neural networks
personal data
privacy
Artificial intelligence
Education
Student performance forecasting
Privacy considerations
Artificial neural network model
Data from The Open University
Number of course attempts
Course pass rate
Use of virtual materials
Model performance metrics
title_short Artificial neural network model to predict student performance using nonpersonal information
title_full Artificial neural network model to predict student performance using nonpersonal information
title_fullStr Artificial neural network model to predict student performance using nonpersonal information
title_full_unstemmed Artificial neural network model to predict student performance using nonpersonal information
title_sort Artificial neural network model to predict student performance using nonpersonal information
author Chavez, Heyul
author_facet Chavez, Heyul
Chavez-Arias, Bill
Contreras-Rosas, Sebastian
Alvarez-Rodríguez, Jose María
Raymundo, Carlos
author_role author
author2 Chavez-Arias, Bill
Contreras-Rosas, Sebastian
Alvarez-Rodríguez, Jose María
Raymundo, Carlos
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Chavez, Heyul
Chavez-Arias, Bill
Contreras-Rosas, Sebastian
Alvarez-Rodríguez, Jose María
Raymundo, Carlos
dc.subject.es_PE.fl_str_mv academic performance
forecasting
neural networks
personal data
privacy
Artificial intelligence
Education
Student performance forecasting
Privacy considerations
Artificial neural network model
Data from The Open University
Number of course attempts
Course pass rate
Use of virtual materials
Model performance metrics
topic academic performance
forecasting
neural networks
personal data
privacy
Artificial intelligence
Education
Student performance forecasting
Privacy considerations
Artificial neural network model
Data from The Open University
Number of course attempts
Course pass rate
Use of virtual materials
Model performance metrics
description In recent years, artificial intelligence has played an important role in education, wherein one of the most commonly used applications is forecasting students’ academic performance based on personal information such as social status, income, address, etc. This study proposes and develops an artificial neural network model capable of determining whether a student will pass a certain class without using personal or sensitive information that may compromise student privacy. For model training, we used information regarding 32,000 students collected from The Open University of the United Kingdom, such as number of times they took the course, average number of evaluations, course pass rate, average use of virtual materials per date and number of clicks in virtual classrooms. Attributes selected for the model are as follows: 93.81% accuracy, 94.15% precision, 95.13% recall, and 94.64% F1-score. These results will help the student authorities to take measures to avoid withdrawal and underachievement.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-07-07T10:52:21Z
dc.date.available.none.fl_str_mv 2023-07-07T10:52:21Z
dc.date.issued.fl_str_mv 2023-02-09
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.doi.none.fl_str_mv 10.3389/feduc.2023.1106679
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10757/668167
dc.identifier.eissn.none.fl_str_mv 2504284X
dc.identifier.journal.es_PE.fl_str_mv Frontiers in Education
dc.identifier.eid.none.fl_str_mv 2-s2.0-85148600255
dc.identifier.scopusid.none.fl_str_mv SCOPUS_ID:85148600255
dc.identifier.isni.none.fl_str_mv 0000 0001 2196 144X
identifier_str_mv 10.3389/feduc.2023.1106679
2504284X
Frontiers in Education
2-s2.0-85148600255
SCOPUS_ID:85148600255
0000 0001 2196 144X
url http://hdl.handle.net/10757/668167
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.relation.url.es_PE.fl_str_mv https://www.frontiersin.org/articles/10.3389/feduc.2023.1106679/full
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv Frontiers Media S.A.
dc.source.none.fl_str_mv reponame:UPC-Institucional
instname:Universidad Peruana de Ciencias Aplicadas
instacron:UPC
instname_str Universidad Peruana de Ciencias Aplicadas
instacron_str UPC
institution UPC
reponame_str UPC-Institucional
collection UPC-Institucional
dc.source.journaltitle.none.fl_str_mv Frontiers in Education
dc.source.volume.none.fl_str_mv 8
bitstream.url.fl_str_mv https://repositorioacademico.upc.edu.pe/bitstream/10757/668167/5/feduc-08-1106679.pdf.jpg
https://repositorioacademico.upc.edu.pe/bitstream/10757/668167/4/feduc-08-1106679.pdf.txt
https://repositorioacademico.upc.edu.pe/bitstream/10757/668167/3/license.txt
https://repositorioacademico.upc.edu.pe/bitstream/10757/668167/2/license_rdf
https://repositorioacademico.upc.edu.pe/bitstream/10757/668167/1/feduc-08-1106679.pdf
bitstream.checksum.fl_str_mv db33e6e279cb2a694151f4367053e1ae
89c168a9a2b48b2dd6c8500929e2d69f
8a4605be74aa9ea9d79846c1fba20a33
4460e5956bc1d1639be9ae6146a50347
0b4ef760f5a4ace372f055e120706479
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio académico upc
repository.mail.fl_str_mv upc@openrepository.com
_version_ 1846065926059851776
spelling 17de09ac39470e349eb92154e24a5337500d5cc99585d867f88ac2dfeba88f6951a300c0e87e6acffc38ba1628928ac07bf700300f2f0d24e26432ebfd235890a1cfbf4a1300f1b29165990ab4ce165cbf28f5e4ccd9500Chavez, HeyulChavez-Arias, BillContreras-Rosas, SebastianAlvarez-Rodríguez, Jose MaríaRaymundo, Carlos2023-07-07T10:52:21Z2023-07-07T10:52:21Z2023-02-0910.3389/feduc.2023.1106679http://hdl.handle.net/10757/6681672504284XFrontiers in Education2-s2.0-85148600255SCOPUS_ID:851486002550000 0001 2196 144XIn recent years, artificial intelligence has played an important role in education, wherein one of the most commonly used applications is forecasting students’ academic performance based on personal information such as social status, income, address, etc. This study proposes and develops an artificial neural network model capable of determining whether a student will pass a certain class without using personal or sensitive information that may compromise student privacy. For model training, we used information regarding 32,000 students collected from The Open University of the United Kingdom, such as number of times they took the course, average number of evaluations, course pass rate, average use of virtual materials per date and number of clicks in virtual classrooms. Attributes selected for the model are as follows: 93.81% accuracy, 94.15% precision, 95.13% recall, and 94.64% F1-score. These results will help the student authorities to take measures to avoid withdrawal and underachievement.Revisión por paresODS 4: Educación de calidadODS 9: Industria, Innovación e InfraestructuraODS 10: Reducción de las Desigualdadesapplication/pdfengFrontiers Media S.A.https://www.frontiersin.org/articles/10.3389/feduc.2023.1106679/fullinfo:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/academic performanceforecastingneural networkspersonal dataprivacyArtificial intelligenceEducationStudent performance forecastingPrivacy considerationsArtificial neural network modelData from The Open UniversityNumber of course attemptsCourse pass rateUse of virtual materialsModel performance metricsArtificial neural network model to predict student performance using nonpersonal informationinfo:eu-repo/semantics/articleFrontiers in Education8reponame:UPC-Institucionalinstname:Universidad Peruana de Ciencias Aplicadasinstacron:UPC2023-07-07T10:52:22ZTHUMBNAILfeduc-08-1106679.pdf.jpgfeduc-08-1106679.pdf.jpgGenerated Thumbnailimage/jpeg109721https://repositorioacademico.upc.edu.pe/bitstream/10757/668167/5/feduc-08-1106679.pdf.jpgdb33e6e279cb2a694151f4367053e1aeMD55falseTEXTfeduc-08-1106679.pdf.txtfeduc-08-1106679.pdf.txtExtracted texttext/plain52208https://repositorioacademico.upc.edu.pe/bitstream/10757/668167/4/feduc-08-1106679.pdf.txt89c168a9a2b48b2dd6c8500929e2d69fMD54falseLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorioacademico.upc.edu.pe/bitstream/10757/668167/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53falseCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorioacademico.upc.edu.pe/bitstream/10757/668167/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52falseORIGINALfeduc-08-1106679.pdffeduc-08-1106679.pdfapplication/pdf1897260https://repositorioacademico.upc.edu.pe/bitstream/10757/668167/1/feduc-08-1106679.pdf0b4ef760f5a4ace372f055e120706479MD51true10757/668167oai:repositorioacademico.upc.edu.pe:10757/6681672024-07-18 23:12:17.542Repositorio académico upcupc@openrepository.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.936249
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).