Interaction between genetic risk score and dietary carbohydrate intake on high-density lipoprotein cholesterol levels: Findings from the study of obesity, nutrition, genes and social factors (SONGS)

Descripción del Articulo

Background & aims: Cardiometabolic traits are complex interrelated traits that result from a combination of genetic and lifestyle factors. This study aimed to assess the interaction between genetic variants and dietary macronutrient intake on cardiometabolic traits [body mass index, waist circum...

Descripción completa

Detalles Bibliográficos
Autores: Wuni, Ramatu, Curi-Quinto, Katherine, Liu, Litai, Espinoza, Dianela, Aquino, Anthony I., del Valle-Mendoza, Juana, Aguilar-Luis, Miguel Angel, Murray, Claudia, Nunes, Richard, Methven, Lisa, Lovegrove, Julie A., Penny, Mary, Favara, Marta, Sánchez, Alan, Vimaleswaran, Karani Santhanakrishnan
Formato: artículo
Fecha de Publicación:2025
Institución:Universidad Peruana de Ciencias Aplicadas
Repositorio:UPC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorioacademico.upc.edu.pe:10757/684182
Enlace del recurso:http://hdl.handle.net/10757/684182
Nivel de acceso:acceso abierto
Materia:Carbohydrate intake
Genetic risk score
Gene–diet interaction
HDL-C
Lipids
Peru
id UUPC_04ab9f44f0fcc40614f8f314bfd131e9
oai_identifier_str oai:repositorioacademico.upc.edu.pe:10757/684182
network_acronym_str UUPC
network_name_str UPC-Institucional
repository_id_str 2670
dc.title.es_PE.fl_str_mv Interaction between genetic risk score and dietary carbohydrate intake on high-density lipoprotein cholesterol levels: Findings from the study of obesity, nutrition, genes and social factors (SONGS)
title Interaction between genetic risk score and dietary carbohydrate intake on high-density lipoprotein cholesterol levels: Findings from the study of obesity, nutrition, genes and social factors (SONGS)
spellingShingle Interaction between genetic risk score and dietary carbohydrate intake on high-density lipoprotein cholesterol levels: Findings from the study of obesity, nutrition, genes and social factors (SONGS)
Wuni, Ramatu
Carbohydrate intake
Genetic risk score
Gene–diet interaction
HDL-C
Lipids
Peru
title_short Interaction between genetic risk score and dietary carbohydrate intake on high-density lipoprotein cholesterol levels: Findings from the study of obesity, nutrition, genes and social factors (SONGS)
title_full Interaction between genetic risk score and dietary carbohydrate intake on high-density lipoprotein cholesterol levels: Findings from the study of obesity, nutrition, genes and social factors (SONGS)
title_fullStr Interaction between genetic risk score and dietary carbohydrate intake on high-density lipoprotein cholesterol levels: Findings from the study of obesity, nutrition, genes and social factors (SONGS)
title_full_unstemmed Interaction between genetic risk score and dietary carbohydrate intake on high-density lipoprotein cholesterol levels: Findings from the study of obesity, nutrition, genes and social factors (SONGS)
title_sort Interaction between genetic risk score and dietary carbohydrate intake on high-density lipoprotein cholesterol levels: Findings from the study of obesity, nutrition, genes and social factors (SONGS)
author Wuni, Ramatu
author_facet Wuni, Ramatu
Curi-Quinto, Katherine
Liu, Litai
Espinoza, Dianela
Aquino, Anthony I.
del Valle-Mendoza, Juana
Aguilar-Luis, Miguel Angel
Murray, Claudia
Nunes, Richard
Methven, Lisa
Lovegrove, Julie A.
Penny, Mary
Favara, Marta
Sánchez, Alan
Vimaleswaran, Karani Santhanakrishnan
author_role author
author2 Curi-Quinto, Katherine
Liu, Litai
Espinoza, Dianela
Aquino, Anthony I.
del Valle-Mendoza, Juana
Aguilar-Luis, Miguel Angel
Murray, Claudia
Nunes, Richard
Methven, Lisa
Lovegrove, Julie A.
Penny, Mary
Favara, Marta
Sánchez, Alan
Vimaleswaran, Karani Santhanakrishnan
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Wuni, Ramatu
Curi-Quinto, Katherine
Liu, Litai
Espinoza, Dianela
Aquino, Anthony I.
del Valle-Mendoza, Juana
Aguilar-Luis, Miguel Angel
Murray, Claudia
Nunes, Richard
Methven, Lisa
Lovegrove, Julie A.
Penny, Mary
Favara, Marta
Sánchez, Alan
Vimaleswaran, Karani Santhanakrishnan
dc.subject.es_PE.fl_str_mv Carbohydrate intake
Genetic risk score
Gene–diet interaction
HDL-C
Lipids
Peru
topic Carbohydrate intake
Genetic risk score
Gene–diet interaction
HDL-C
Lipids
Peru
description Background & aims: Cardiometabolic traits are complex interrelated traits that result from a combination of genetic and lifestyle factors. This study aimed to assess the interaction between genetic variants and dietary macronutrient intake on cardiometabolic traits [body mass index, waist circumference, total cholesterol, high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol, triacylglycerol, systolic blood pressure, diastolic blood pressure, fasting serum glucose, fasting serum insulin, and glycated haemoglobin]. Methods: This cross-sectional study consisted of 468 urban young adults aged 20 ± 1 years, and it was conducted as part of the Study of Obesity, Nutrition, Genes and Social factors (SONGS) project, a sub-study of the Young Lives study. Thirty-nine single nucleotide polymorphisms (SNPs) known to be associated with cardiometabolic traits at a genome-wide significance level (P < 5 × 10−8) were used to construct a genetic risk score (GRS). Results: There were no significant associations between the GRS and any of the cardiometabolic traits. However, a significant interaction was observed between the GRS and carbohydrate intake on HDL-C concentration (Pinteraction = 0.0007). In the first tertile of carbohydrate intake (≤327 g/day), participants with a high GRS (>37 risk alleles) had a higher concentration of HDL-C than those with a low GRS (≤37 risk alleles) [Beta = 0.06 mmol/L, 95 % confidence interval (CI), 0.01–0.10; P = 0.018]. In the third tertile of carbohydrate intake (>452 g/day), participants with a high GRS had a lower concentration of HDL-C than those with a low GRS (Beta = −0.04 mmol/L, 95 % CI –0.01 to −0.09; P = 0.027). A significant interaction was also observed between the GRS and glycaemic load (GL) on the concentration of HDL-C (Pinteraction = 0.002). For participants with a high GRS, there were lower concentrations of HDL-C across tertiles of GL (Ptrend = 0.017). There was no significant interaction between the GRS and glycaemic index on the concentration of HDL-C, and none of the other GRS∗macronutrient interactions were significant. Conclusions: Our results suggest that young adults who consume a higher carbohydrate diet and have a higher GRS have a lower HDL-C concentration, which in turn is linked to cardiovascular diseases, and indicate that personalised nutrition strategies targeting a reduction in carbohydrate intake might be beneficial for these individuals.
publishDate 2025
dc.date.accessioned.none.fl_str_mv 2025-02-06T22:19:07Z
dc.date.available.none.fl_str_mv 2025-02-06T22:19:07Z
dc.date.issued.fl_str_mv 2025-04-01
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.doi.none.fl_str_mv 10.1016/j.clnesp.2024.12.027
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10757/684182
dc.identifier.eissn.none.fl_str_mv 24054577
dc.identifier.journal.es_PE.fl_str_mv Clinical Nutrition ESPEN
dc.identifier.eid.none.fl_str_mv 2-s2.0-85215565941
dc.identifier.scopusid.none.fl_str_mv SCOPUS_ID:85215565941
dc.identifier.pii.none.fl_str_mv S2405457725000270
dc.identifier.isni.none.fl_str_mv 0000 0001 2196 144X
dc.identifier.ror.none.fl_str_mv 047xrr705
identifier_str_mv 10.1016/j.clnesp.2024.12.027
24054577
Clinical Nutrition ESPEN
2-s2.0-85215565941
SCOPUS_ID:85215565941
S2405457725000270
0000 0001 2196 144X
047xrr705
url http://hdl.handle.net/10757/684182
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.*.fl_str_mv Attribution 4.0 International
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv Attribution 4.0 International
http://creativecommons.org/licenses/by/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv Elsevier Ltd
dc.source.es_PE.fl_str_mv Universidad Peruana de Ciencias Aplicadas (UPC)
Repositorio Academico - UPC
dc.source.none.fl_str_mv reponame:UPC-Institucional
instname:Universidad Peruana de Ciencias Aplicadas
instacron:UPC
instname_str Universidad Peruana de Ciencias Aplicadas
instacron_str UPC
institution UPC
reponame_str UPC-Institucional
collection UPC-Institucional
dc.source.journaltitle.none.fl_str_mv Clinical Nutrition ESPEN
dc.source.volume.none.fl_str_mv 66
dc.source.beginpage.none.fl_str_mv 83
dc.source.endpage.none.fl_str_mv 92
bitstream.url.fl_str_mv https://repositorioacademico.upc.edu.pe/bitstream/10757/684182/5/1-s2.0-S2405457725000270-main.pdf.jpg
https://repositorioacademico.upc.edu.pe/bitstream/10757/684182/4/1-s2.0-S2405457725000270-main.pdf.txt
https://repositorioacademico.upc.edu.pe/bitstream/10757/684182/3/license.txt
https://repositorioacademico.upc.edu.pe/bitstream/10757/684182/2/license_rdf
https://repositorioacademico.upc.edu.pe/bitstream/10757/684182/1/1-s2.0-S2405457725000270-main.pdf
bitstream.checksum.fl_str_mv f0a34e00bac9cf6e035300ee7c01c584
b9ceec1c0eec8f738f6bfcd1301b87f5
8a4605be74aa9ea9d79846c1fba20a33
0175ea4a2d4caec4bbcc37e300941108
366fa1796cf67384478335369e5381b9
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio académico upc
repository.mail.fl_str_mv upc@openrepository.com
_version_ 1846066142193385472
spelling e4f8e9a31f1a8e17895ac6959f9153fb300a4d7f7fc844581a8d95330a8c69edd36c415c303cf0219a7dc6382475f8244033008010a0af6fc4d2bfae0a090bad2236fd30036fabb3d3adaafbfe40b4dc768474fa2300046d5851c4dd69c686f2b4eb242288d121bad07c2b150a8484f20601b5eddf05600http://orcid.org/0000-0001-7023-319055bc1c691b5e732af5b0ed22f621432f3002f9251506223addc414d0efd346b6b25300d04e7bbc87a261f30344fa4a45813616300b37f3419f4cc54901827d9528a001b7d300b046ad083bf3626ca949a2886c2d1d65300161df2c0af6035f2bdb61999dcc344233006ea843433070d754b2963d96104e63bcfdc55895917fccc4745110fea77e25b3300Wuni, RamatuCuri-Quinto, KatherineLiu, LitaiEspinoza, DianelaAquino, Anthony I.del Valle-Mendoza, JuanaAguilar-Luis, Miguel AngelMurray, ClaudiaNunes, RichardMethven, LisaLovegrove, Julie A.Penny, MaryFavara, MartaSánchez, AlanVimaleswaran, Karani Santhanakrishnan2025-02-06T22:19:07Z2025-02-06T22:19:07Z2025-04-0110.1016/j.clnesp.2024.12.027http://hdl.handle.net/10757/68418224054577Clinical Nutrition ESPEN2-s2.0-85215565941SCOPUS_ID:85215565941S24054577250002700000 0001 2196 144X047xrr705Background & aims: Cardiometabolic traits are complex interrelated traits that result from a combination of genetic and lifestyle factors. This study aimed to assess the interaction between genetic variants and dietary macronutrient intake on cardiometabolic traits [body mass index, waist circumference, total cholesterol, high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol, triacylglycerol, systolic blood pressure, diastolic blood pressure, fasting serum glucose, fasting serum insulin, and glycated haemoglobin]. Methods: This cross-sectional study consisted of 468 urban young adults aged 20 ± 1 years, and it was conducted as part of the Study of Obesity, Nutrition, Genes and Social factors (SONGS) project, a sub-study of the Young Lives study. Thirty-nine single nucleotide polymorphisms (SNPs) known to be associated with cardiometabolic traits at a genome-wide significance level (P < 5 × 10−8) were used to construct a genetic risk score (GRS). Results: There were no significant associations between the GRS and any of the cardiometabolic traits. However, a significant interaction was observed between the GRS and carbohydrate intake on HDL-C concentration (Pinteraction = 0.0007). In the first tertile of carbohydrate intake (≤327 g/day), participants with a high GRS (>37 risk alleles) had a higher concentration of HDL-C than those with a low GRS (≤37 risk alleles) [Beta = 0.06 mmol/L, 95 % confidence interval (CI), 0.01–0.10; P = 0.018]. In the third tertile of carbohydrate intake (>452 g/day), participants with a high GRS had a lower concentration of HDL-C than those with a low GRS (Beta = −0.04 mmol/L, 95 % CI –0.01 to −0.09; P = 0.027). A significant interaction was also observed between the GRS and glycaemic load (GL) on the concentration of HDL-C (Pinteraction = 0.002). For participants with a high GRS, there were lower concentrations of HDL-C across tertiles of GL (Ptrend = 0.017). There was no significant interaction between the GRS and glycaemic index on the concentration of HDL-C, and none of the other GRS∗macronutrient interactions were significant. Conclusions: Our results suggest that young adults who consume a higher carbohydrate diet and have a higher GRS have a lower HDL-C concentration, which in turn is linked to cardiovascular diseases, and indicate that personalised nutrition strategies targeting a reduction in carbohydrate intake might be beneficial for these individuals.Foreign, Commonwealth and Development OfficeRevisión por paresODS 3: Salud y bienestarODS 9: Industria, innovación e infraestructuraODS 17: Alianzas para lograr los objetivosapplication/pdfengElsevier Ltdinfo:eu-repo/semantics/openAccessAttribution 4.0 Internationalhttp://creativecommons.org/licenses/by/4.0/Universidad Peruana de Ciencias Aplicadas (UPC)Repositorio Academico - UPCClinical Nutrition ESPEN668392reponame:UPC-Institucionalinstname:Universidad Peruana de Ciencias Aplicadasinstacron:UPCCarbohydrate intakeGenetic risk scoreGene–diet interactionHDL-CLipidsPeruInteraction between genetic risk score and dietary carbohydrate intake on high-density lipoprotein cholesterol levels: Findings from the study of obesity, nutrition, genes and social factors (SONGS)info:eu-repo/semantics/article2025-02-06T22:19:08ZTHUMBNAIL1-s2.0-S2405457725000270-main.pdf.jpg1-s2.0-S2405457725000270-main.pdf.jpgGenerated Thumbnailimage/jpeg113018https://repositorioacademico.upc.edu.pe/bitstream/10757/684182/5/1-s2.0-S2405457725000270-main.pdf.jpgf0a34e00bac9cf6e035300ee7c01c584MD55falseTEXT1-s2.0-S2405457725000270-main.pdf.txt1-s2.0-S2405457725000270-main.pdf.txtExtracted texttext/plain68997https://repositorioacademico.upc.edu.pe/bitstream/10757/684182/4/1-s2.0-S2405457725000270-main.pdf.txtb9ceec1c0eec8f738f6bfcd1301b87f5MD54falseLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorioacademico.upc.edu.pe/bitstream/10757/684182/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53falseCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8908https://repositorioacademico.upc.edu.pe/bitstream/10757/684182/2/license_rdf0175ea4a2d4caec4bbcc37e300941108MD52falseORIGINAL1-s2.0-S2405457725000270-main.pdf1-s2.0-S2405457725000270-main.pdfapplication/pdf632695https://repositorioacademico.upc.edu.pe/bitstream/10757/684182/1/1-s2.0-S2405457725000270-main.pdf366fa1796cf67384478335369e5381b9MD51true10757/684182oai:repositorioacademico.upc.edu.pe:10757/6841822025-03-20 21:22:03.208Repositorio académico upcupc@openrepository.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.945474
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).