Predictive Analysis Model to Improve the Control of Eating Disorders in Adolescents in Metropolitan Lima Based on Machine Learning
Descripción del Articulo
Objective Eating disorders in adolescents have been a recurring issue within our society, significantly impacting their mental and physical well-being. This study aims to implement a predictive analysis model based on machine learning and the EDI-3 evaluation method to forecast eating disorders (ED)...
| Autores: | , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2024 |
| Institución: | Universidad Peruana de Ciencias Aplicadas |
| Repositorio: | UPC-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorioacademico.upc.edu.pe:10757/676033 |
| Enlace del recurso: | http://hdl.handle.net/10757/676033 |
| Nivel de acceso: | acceso embargado |
| Materia: | Eating disorders Inventory of eating disorders Machine learning Random Forest |
| id |
UUPC_01c77f66995155a85c4d545487b563ac |
|---|---|
| oai_identifier_str |
oai:repositorioacademico.upc.edu.pe:10757/676033 |
| network_acronym_str |
UUPC |
| network_name_str |
UPC-Institucional |
| repository_id_str |
2670 |
| dc.title.es_PE.fl_str_mv |
Predictive Analysis Model to Improve the Control of Eating Disorders in Adolescents in Metropolitan Lima Based on Machine Learning |
| title |
Predictive Analysis Model to Improve the Control of Eating Disorders in Adolescents in Metropolitan Lima Based on Machine Learning |
| spellingShingle |
Predictive Analysis Model to Improve the Control of Eating Disorders in Adolescents in Metropolitan Lima Based on Machine Learning Solano, Jeffery Bryce Molina Eating disorders Inventory of eating disorders Machine learning Random Forest |
| title_short |
Predictive Analysis Model to Improve the Control of Eating Disorders in Adolescents in Metropolitan Lima Based on Machine Learning |
| title_full |
Predictive Analysis Model to Improve the Control of Eating Disorders in Adolescents in Metropolitan Lima Based on Machine Learning |
| title_fullStr |
Predictive Analysis Model to Improve the Control of Eating Disorders in Adolescents in Metropolitan Lima Based on Machine Learning |
| title_full_unstemmed |
Predictive Analysis Model to Improve the Control of Eating Disorders in Adolescents in Metropolitan Lima Based on Machine Learning |
| title_sort |
Predictive Analysis Model to Improve the Control of Eating Disorders in Adolescents in Metropolitan Lima Based on Machine Learning |
| author |
Solano, Jeffery Bryce Molina |
| author_facet |
Solano, Jeffery Bryce Molina Revelo, Valeria Angelica Castillo Falcon, Víctor Manuel Parasi |
| author_role |
author |
| author2 |
Revelo, Valeria Angelica Castillo Falcon, Víctor Manuel Parasi |
| author2_role |
author author |
| dc.contributor.author.fl_str_mv |
Solano, Jeffery Bryce Molina Revelo, Valeria Angelica Castillo Falcon, Víctor Manuel Parasi |
| dc.subject.es_PE.fl_str_mv |
Eating disorders Inventory of eating disorders Machine learning Random Forest |
| topic |
Eating disorders Inventory of eating disorders Machine learning Random Forest |
| description |
Objective Eating disorders in adolescents have been a recurring issue within our society, significantly impacting their mental and physical well-being. This study aims to implement a predictive analysis model based on machine learning and the EDI-3 evaluation method to forecast eating disorders (ED) in adolescents. Method Using the machine learning tool with the Random Forest algorithm and the Eating Disorder Inventory-3 (EDI-3) assessment method, a dataset of information was gathered from a sample of 500 adolescent students. This dataset will contribute to the training of the predictive model, enabling it to identify patterns of eating behaviors in end-users. Results Through data cleaning of the final dataset, 70% of the information was utilized for training the predictive model, and 30% was allocated for subsequent validation. This approach yielded an effectiveness rate of 92.27% upon completion of the training. Furthermore, in order to validate these results, Cronbach’s alpha coefficient was employed, resulting in a score of 0.70, indicative of a satisfactory level of reliability. Discussion The results obtained strongly support one of the main objectives of the study conducted, as it significantly surpasses the 85% accuracy threshold. Our results suggest that eating behavior patterns can be crucial factors in making predictions that enable the early identification of positive cases. |
| publishDate |
2024 |
| dc.date.accessioned.none.fl_str_mv |
2024-10-06T11:38:53Z |
| dc.date.available.none.fl_str_mv |
2024-10-06T11:38:53Z |
| dc.date.issued.fl_str_mv |
2024-01-01 |
| dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| dc.identifier.issn.none.fl_str_mv |
23673370 |
| dc.identifier.doi.none.fl_str_mv |
10.1007/978-981-97-3289-0_11 |
| dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10757/676033 |
| dc.identifier.eissn.none.fl_str_mv |
23673389 |
| dc.identifier.journal.es_PE.fl_str_mv |
Lecture Notes in Networks and Systems |
| dc.identifier.eid.none.fl_str_mv |
2-s2.0-85201116595 |
| dc.identifier.scopusid.none.fl_str_mv |
SCOPUS_ID:85201116595 |
| identifier_str_mv |
23673370 10.1007/978-981-97-3289-0_11 23673389 Lecture Notes in Networks and Systems 2-s2.0-85201116595 SCOPUS_ID:85201116595 |
| url |
http://hdl.handle.net/10757/676033 |
| dc.language.iso.es_PE.fl_str_mv |
eng |
| language |
eng |
| dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
| eu_rights_str_mv |
embargoedAccess |
| dc.format.es_PE.fl_str_mv |
application/html |
| dc.publisher.es_PE.fl_str_mv |
Springer Science and Business Media Deutschland GmbH |
| dc.source.none.fl_str_mv |
reponame:UPC-Institucional instname:Universidad Peruana de Ciencias Aplicadas instacron:UPC |
| instname_str |
Universidad Peruana de Ciencias Aplicadas |
| instacron_str |
UPC |
| institution |
UPC |
| reponame_str |
UPC-Institucional |
| collection |
UPC-Institucional |
| dc.source.journaltitle.none.fl_str_mv |
Lecture Notes in Networks and Systems |
| dc.source.volume.none.fl_str_mv |
1000 LNNS |
| dc.source.beginpage.none.fl_str_mv |
125 |
| dc.source.endpage.none.fl_str_mv |
135 |
| bitstream.url.fl_str_mv |
https://repositorioacademico.upc.edu.pe/bitstream/10757/676033/1/license.txt |
| bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
| repository.name.fl_str_mv |
Repositorio académico upc |
| repository.mail.fl_str_mv |
upc@openrepository.com |
| _version_ |
1846066052427939840 |
| spelling |
f122c6b2afbf252616e5a584a4a49e213007ec32990272e690cfd8dd016814384a630042a541e55a54ad840104963db76f8d67300Solano, Jeffery Bryce MolinaRevelo, Valeria Angelica CastilloFalcon, Víctor Manuel Parasi2024-10-06T11:38:53Z2024-10-06T11:38:53Z2024-01-012367337010.1007/978-981-97-3289-0_11http://hdl.handle.net/10757/67603323673389Lecture Notes in Networks and Systems2-s2.0-85201116595SCOPUS_ID:85201116595Objective Eating disorders in adolescents have been a recurring issue within our society, significantly impacting their mental and physical well-being. This study aims to implement a predictive analysis model based on machine learning and the EDI-3 evaluation method to forecast eating disorders (ED) in adolescents. Method Using the machine learning tool with the Random Forest algorithm and the Eating Disorder Inventory-3 (EDI-3) assessment method, a dataset of information was gathered from a sample of 500 adolescent students. This dataset will contribute to the training of the predictive model, enabling it to identify patterns of eating behaviors in end-users. Results Through data cleaning of the final dataset, 70% of the information was utilized for training the predictive model, and 30% was allocated for subsequent validation. This approach yielded an effectiveness rate of 92.27% upon completion of the training. Furthermore, in order to validate these results, Cronbach’s alpha coefficient was employed, resulting in a score of 0.70, indicative of a satisfactory level of reliability. Discussion The results obtained strongly support one of the main objectives of the study conducted, as it significantly surpasses the 85% accuracy threshold. Our results suggest that eating behavior patterns can be crucial factors in making predictions that enable the early identification of positive cases.application/htmlengSpringer Science and Business Media Deutschland GmbHinfo:eu-repo/semantics/embargoedAccessEating disordersInventory of eating disordersMachine learningRandom ForestPredictive Analysis Model to Improve the Control of Eating Disorders in Adolescents in Metropolitan Lima Based on Machine Learninginfo:eu-repo/semantics/articleLecture Notes in Networks and Systems1000 LNNS125135reponame:UPC-Institucionalinstname:Universidad Peruana de Ciencias Aplicadasinstacron:UPCLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorioacademico.upc.edu.pe/bitstream/10757/676033/1/license.txt8a4605be74aa9ea9d79846c1fba20a33MD51false10757/676033oai:repositorioacademico.upc.edu.pe:10757/6760332024-10-06 11:38:55.841Repositorio académico upcupc@openrepository.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
| score |
13.905282 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).