Predictive Analysis Model to Improve the Control of Eating Disorders in Adolescents in Metropolitan Lima Based on Machine Learning

Descripción del Articulo

Objective Eating disorders in adolescents have been a recurring issue within our society, significantly impacting their mental and physical well-being. This study aims to implement a predictive analysis model based on machine learning and the EDI-3 evaluation method to forecast eating disorders (ED)...

Descripción completa

Detalles Bibliográficos
Autores: Solano, Jeffery Bryce Molina, Revelo, Valeria Angelica Castillo, Falcon, Víctor Manuel Parasi
Formato: artículo
Fecha de Publicación:2024
Institución:Universidad Peruana de Ciencias Aplicadas
Repositorio:UPC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorioacademico.upc.edu.pe:10757/676033
Enlace del recurso:http://hdl.handle.net/10757/676033
Nivel de acceso:acceso embargado
Materia:Eating disorders
Inventory of eating disorders
Machine learning
Random Forest
id UUPC_01c77f66995155a85c4d545487b563ac
oai_identifier_str oai:repositorioacademico.upc.edu.pe:10757/676033
network_acronym_str UUPC
network_name_str UPC-Institucional
repository_id_str 2670
dc.title.es_PE.fl_str_mv Predictive Analysis Model to Improve the Control of Eating Disorders in Adolescents in Metropolitan Lima Based on Machine Learning
title Predictive Analysis Model to Improve the Control of Eating Disorders in Adolescents in Metropolitan Lima Based on Machine Learning
spellingShingle Predictive Analysis Model to Improve the Control of Eating Disorders in Adolescents in Metropolitan Lima Based on Machine Learning
Solano, Jeffery Bryce Molina
Eating disorders
Inventory of eating disorders
Machine learning
Random Forest
title_short Predictive Analysis Model to Improve the Control of Eating Disorders in Adolescents in Metropolitan Lima Based on Machine Learning
title_full Predictive Analysis Model to Improve the Control of Eating Disorders in Adolescents in Metropolitan Lima Based on Machine Learning
title_fullStr Predictive Analysis Model to Improve the Control of Eating Disorders in Adolescents in Metropolitan Lima Based on Machine Learning
title_full_unstemmed Predictive Analysis Model to Improve the Control of Eating Disorders in Adolescents in Metropolitan Lima Based on Machine Learning
title_sort Predictive Analysis Model to Improve the Control of Eating Disorders in Adolescents in Metropolitan Lima Based on Machine Learning
author Solano, Jeffery Bryce Molina
author_facet Solano, Jeffery Bryce Molina
Revelo, Valeria Angelica Castillo
Falcon, Víctor Manuel Parasi
author_role author
author2 Revelo, Valeria Angelica Castillo
Falcon, Víctor Manuel Parasi
author2_role author
author
dc.contributor.author.fl_str_mv Solano, Jeffery Bryce Molina
Revelo, Valeria Angelica Castillo
Falcon, Víctor Manuel Parasi
dc.subject.es_PE.fl_str_mv Eating disorders
Inventory of eating disorders
Machine learning
Random Forest
topic Eating disorders
Inventory of eating disorders
Machine learning
Random Forest
description Objective Eating disorders in adolescents have been a recurring issue within our society, significantly impacting their mental and physical well-being. This study aims to implement a predictive analysis model based on machine learning and the EDI-3 evaluation method to forecast eating disorders (ED) in adolescents. Method Using the machine learning tool with the Random Forest algorithm and the Eating Disorder Inventory-3 (EDI-3) assessment method, a dataset of information was gathered from a sample of 500 adolescent students. This dataset will contribute to the training of the predictive model, enabling it to identify patterns of eating behaviors in end-users. Results Through data cleaning of the final dataset, 70% of the information was utilized for training the predictive model, and 30% was allocated for subsequent validation. This approach yielded an effectiveness rate of 92.27% upon completion of the training. Furthermore, in order to validate these results, Cronbach’s alpha coefficient was employed, resulting in a score of 0.70, indicative of a satisfactory level of reliability. Discussion The results obtained strongly support one of the main objectives of the study conducted, as it significantly surpasses the 85% accuracy threshold. Our results suggest that eating behavior patterns can be crucial factors in making predictions that enable the early identification of positive cases.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-10-06T11:38:53Z
dc.date.available.none.fl_str_mv 2024-10-06T11:38:53Z
dc.date.issued.fl_str_mv 2024-01-01
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.issn.none.fl_str_mv 23673370
dc.identifier.doi.none.fl_str_mv 10.1007/978-981-97-3289-0_11
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10757/676033
dc.identifier.eissn.none.fl_str_mv 23673389
dc.identifier.journal.es_PE.fl_str_mv Lecture Notes in Networks and Systems
dc.identifier.eid.none.fl_str_mv 2-s2.0-85201116595
dc.identifier.scopusid.none.fl_str_mv SCOPUS_ID:85201116595
identifier_str_mv 23673370
10.1007/978-981-97-3289-0_11
23673389
Lecture Notes in Networks and Systems
2-s2.0-85201116595
SCOPUS_ID:85201116595
url http://hdl.handle.net/10757/676033
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/embargoedAccess
eu_rights_str_mv embargoedAccess
dc.format.es_PE.fl_str_mv application/html
dc.publisher.es_PE.fl_str_mv Springer Science and Business Media Deutschland GmbH
dc.source.none.fl_str_mv reponame:UPC-Institucional
instname:Universidad Peruana de Ciencias Aplicadas
instacron:UPC
instname_str Universidad Peruana de Ciencias Aplicadas
instacron_str UPC
institution UPC
reponame_str UPC-Institucional
collection UPC-Institucional
dc.source.journaltitle.none.fl_str_mv Lecture Notes in Networks and Systems
dc.source.volume.none.fl_str_mv 1000 LNNS
dc.source.beginpage.none.fl_str_mv 125
dc.source.endpage.none.fl_str_mv 135
bitstream.url.fl_str_mv https://repositorioacademico.upc.edu.pe/bitstream/10757/676033/1/license.txt
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio académico upc
repository.mail.fl_str_mv upc@openrepository.com
_version_ 1846066052427939840
spelling f122c6b2afbf252616e5a584a4a49e213007ec32990272e690cfd8dd016814384a630042a541e55a54ad840104963db76f8d67300Solano, Jeffery Bryce MolinaRevelo, Valeria Angelica CastilloFalcon, Víctor Manuel Parasi2024-10-06T11:38:53Z2024-10-06T11:38:53Z2024-01-012367337010.1007/978-981-97-3289-0_11http://hdl.handle.net/10757/67603323673389Lecture Notes in Networks and Systems2-s2.0-85201116595SCOPUS_ID:85201116595Objective Eating disorders in adolescents have been a recurring issue within our society, significantly impacting their mental and physical well-being. This study aims to implement a predictive analysis model based on machine learning and the EDI-3 evaluation method to forecast eating disorders (ED) in adolescents. Method Using the machine learning tool with the Random Forest algorithm and the Eating Disorder Inventory-3 (EDI-3) assessment method, a dataset of information was gathered from a sample of 500 adolescent students. This dataset will contribute to the training of the predictive model, enabling it to identify patterns of eating behaviors in end-users. Results Through data cleaning of the final dataset, 70% of the information was utilized for training the predictive model, and 30% was allocated for subsequent validation. This approach yielded an effectiveness rate of 92.27% upon completion of the training. Furthermore, in order to validate these results, Cronbach’s alpha coefficient was employed, resulting in a score of 0.70, indicative of a satisfactory level of reliability. Discussion The results obtained strongly support one of the main objectives of the study conducted, as it significantly surpasses the 85% accuracy threshold. Our results suggest that eating behavior patterns can be crucial factors in making predictions that enable the early identification of positive cases.application/htmlengSpringer Science and Business Media Deutschland GmbHinfo:eu-repo/semantics/embargoedAccessEating disordersInventory of eating disordersMachine learningRandom ForestPredictive Analysis Model to Improve the Control of Eating Disorders in Adolescents in Metropolitan Lima Based on Machine Learninginfo:eu-repo/semantics/articleLecture Notes in Networks and Systems1000 LNNS125135reponame:UPC-Institucionalinstname:Universidad Peruana de Ciencias Aplicadasinstacron:UPCLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorioacademico.upc.edu.pe/bitstream/10757/676033/1/license.txt8a4605be74aa9ea9d79846c1fba20a33MD51false10757/676033oai:repositorioacademico.upc.edu.pe:10757/6760332024-10-06 11:38:55.841Repositorio académico upcupc@openrepository.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.905282
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).