Segmentación de clientes en base a su comportamiento de consumo a través del modelo de segmentación K- MEANS en una entidad Bancaria
Descripción del Articulo
La presente investigación plantea como objetivo determinar la segmentación de clientes más adecuada en base al comportamiento de consumo para obtener un mejor direccionamiento en las ofertas comerciales que se hacen en el banco a través de las campañas, así que se vio la necesidad en realizar este e...
| Autor: | |
|---|---|
| Formato: | tesis de grado |
| Fecha de Publicación: | 2015 |
| Institución: | Universidad Nacional de Ingeniería |
| Repositorio: | UNI-Tesis |
| Lenguaje: | español |
| OAI Identifier: | oai:cybertesis.uni.edu.pe:20.500.14076/3401 |
| Enlace del recurso: | http://hdl.handle.net/20.500.14076/3401 |
| Nivel de acceso: | acceso abierto |
| Materia: | Segmentación de mercado Consumos comerciales Ofertas comerciales |
| id |
UUNI_b39991c1b4b94c10502b44290121f648 |
|---|---|
| oai_identifier_str |
oai:cybertesis.uni.edu.pe:20.500.14076/3401 |
| network_acronym_str |
UUNI |
| network_name_str |
UNI-Tesis |
| repository_id_str |
1534 |
| dc.title.es.fl_str_mv |
Segmentación de clientes en base a su comportamiento de consumo a través del modelo de segmentación K- MEANS en una entidad Bancaria |
| title |
Segmentación de clientes en base a su comportamiento de consumo a través del modelo de segmentación K- MEANS en una entidad Bancaria |
| spellingShingle |
Segmentación de clientes en base a su comportamiento de consumo a través del modelo de segmentación K- MEANS en una entidad Bancaria Salazar Gebol, Jimmy Stalin Segmentación de mercado Consumos comerciales Ofertas comerciales |
| title_short |
Segmentación de clientes en base a su comportamiento de consumo a través del modelo de segmentación K- MEANS en una entidad Bancaria |
| title_full |
Segmentación de clientes en base a su comportamiento de consumo a través del modelo de segmentación K- MEANS en una entidad Bancaria |
| title_fullStr |
Segmentación de clientes en base a su comportamiento de consumo a través del modelo de segmentación K- MEANS en una entidad Bancaria |
| title_full_unstemmed |
Segmentación de clientes en base a su comportamiento de consumo a través del modelo de segmentación K- MEANS en una entidad Bancaria |
| title_sort |
Segmentación de clientes en base a su comportamiento de consumo a través del modelo de segmentación K- MEANS en una entidad Bancaria |
| dc.creator.none.fl_str_mv |
Salazar Gebol, Jimmy Stalin |
| author |
Salazar Gebol, Jimmy Stalin |
| author_facet |
Salazar Gebol, Jimmy Stalin |
| author_role |
author |
| dc.contributor.advisor.fl_str_mv |
Infante Rojas, Magen Danielle |
| dc.contributor.author.fl_str_mv |
Salazar Gebol, Jimmy Stalin |
| dc.subject.es.fl_str_mv |
Segmentación de mercado Consumos comerciales Ofertas comerciales |
| topic |
Segmentación de mercado Consumos comerciales Ofertas comerciales |
| description |
La presente investigación plantea como objetivo determinar la segmentación de clientes más adecuada en base al comportamiento de consumo para obtener un mejor direccionamiento en las ofertas comerciales que se hacen en el banco a través de las campañas, así que se vio la necesidad en realizar este estudio debido a que muchas entidades no sabían a ciencia cierta si lo que ofrecían a sus clientes es lo que generalmente les interesaba, se usaron variedades de rubros de consumos que los clientes transaccionan, sin embargo, tener muchas variables pudieron dificultar las agrupaciones, por ello se usó el análisis factorial para la reducción de estas con la técnica de componentes principales, una vez obtenida los factores finales se realizó la primera división que conjuntamente con los experto en el tema de consumo de tarjeta de créditos se decidió que se evaluaría el segmento cibernauta que son aquellos clientes que en su mayoría realizan sus transacciones por el canal internet, ya con el resto de los clientes (tradicional, no usan con frecuencia el canal internet) se empezó a analizar la segmentación K-Means obteniendo el evolutivo de segmentación tomando como punto inicial a la división de 4 segmentos (K=4), de esta forma junto a los cálculos de cohesión, distancia externa y silueta (forma) del segmento se determinó la validación y la segmentación final que consta de 7 segmentos siendo estas las que mejor direccionan a las ofertas. Por otro lado, se llevó estos segmentos hacia un análisis de visualización para tener la noción de que segmentos podrían tener características similares en caso se quiera que un cliente pueda trasladarse de un segmento a otro, es así que se usó el Mapa Auto-Organizado de Kohonen. Palabras claves. - Componentes Principales, análisis factorial, segmentación K-Means, Mapa Auto-Organizado de Kohonen (SOM). |
| publishDate |
2015 |
| dc.date.accessioned.none.fl_str_mv |
2017-06-20T23:54:32Z |
| dc.date.available.none.fl_str_mv |
2017-06-20T23:54:32Z |
| dc.date.issued.fl_str_mv |
2015 |
| dc.type.es.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
| format |
bachelorThesis |
| dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.14076/3401 |
| url |
http://hdl.handle.net/20.500.14076/3401 |
| dc.language.iso.es.fl_str_mv |
spa |
| language |
spa |
| dc.relation.ispartof.fl_str_mv |
SUNEDU |
| dc.rights.es.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.uri.es.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
| dc.format.es.fl_str_mv |
application/pdf |
| dc.publisher.es.fl_str_mv |
Universidad Nacional de Ingeniería |
| dc.source.es.fl_str_mv |
Universidad Nacional de Ingeniería Repositorio Institucional - UNI |
| dc.source.none.fl_str_mv |
reponame:UNI-Tesis instname:Universidad Nacional de Ingeniería instacron:UNI |
| instname_str |
Universidad Nacional de Ingeniería |
| instacron_str |
UNI |
| institution |
UNI |
| reponame_str |
UNI-Tesis |
| collection |
UNI-Tesis |
| bitstream.url.fl_str_mv |
http://cybertesis.uni.edu.pe/bitstream/20.500.14076/3401/3/salazar_gj.pdf.txt http://cybertesis.uni.edu.pe/bitstream/20.500.14076/3401/2/license.txt http://cybertesis.uni.edu.pe/bitstream/20.500.14076/3401/1/salazar_gj.pdf |
| bitstream.checksum.fl_str_mv |
581f469024c388bda10cf301488cfd33 8a4605be74aa9ea9d79846c1fba20a33 8d6f44af7ed5e80c391573d3480981ca |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional - UNI |
| repository.mail.fl_str_mv |
repositorio@uni.edu.pe |
| _version_ |
1840085468154167296 |
| spelling |
Infante Rojas, Magen DanielleSalazar Gebol, Jimmy StalinSalazar Gebol, Jimmy Stalin2017-06-20T23:54:32Z2017-06-20T23:54:32Z2015http://hdl.handle.net/20.500.14076/3401La presente investigación plantea como objetivo determinar la segmentación de clientes más adecuada en base al comportamiento de consumo para obtener un mejor direccionamiento en las ofertas comerciales que se hacen en el banco a través de las campañas, así que se vio la necesidad en realizar este estudio debido a que muchas entidades no sabían a ciencia cierta si lo que ofrecían a sus clientes es lo que generalmente les interesaba, se usaron variedades de rubros de consumos que los clientes transaccionan, sin embargo, tener muchas variables pudieron dificultar las agrupaciones, por ello se usó el análisis factorial para la reducción de estas con la técnica de componentes principales, una vez obtenida los factores finales se realizó la primera división que conjuntamente con los experto en el tema de consumo de tarjeta de créditos se decidió que se evaluaría el segmento cibernauta que son aquellos clientes que en su mayoría realizan sus transacciones por el canal internet, ya con el resto de los clientes (tradicional, no usan con frecuencia el canal internet) se empezó a analizar la segmentación K-Means obteniendo el evolutivo de segmentación tomando como punto inicial a la división de 4 segmentos (K=4), de esta forma junto a los cálculos de cohesión, distancia externa y silueta (forma) del segmento se determinó la validación y la segmentación final que consta de 7 segmentos siendo estas las que mejor direccionan a las ofertas. Por otro lado, se llevó estos segmentos hacia un análisis de visualización para tener la noción de que segmentos podrían tener características similares en caso se quiera que un cliente pueda trasladarse de un segmento a otro, es así que se usó el Mapa Auto-Organizado de Kohonen. Palabras claves. - Componentes Principales, análisis factorial, segmentación K-Means, Mapa Auto-Organizado de Kohonen (SOM).Submitted by Quispe Rabanal Flavio (flaviofime@hotmail.com) on 2017-06-20T23:54:32Z No. of bitstreams: 1 salazar_gj.pdf: 2329814 bytes, checksum: 8d6f44af7ed5e80c391573d3480981ca (MD5)Made available in DSpace on 2017-06-20T23:54:32Z (GMT). No. of bitstreams: 1 salazar_gj.pdf: 2329814 bytes, checksum: 8d6f44af7ed5e80c391573d3480981ca (MD5) Previous issue date: 2015Informe de suficiencia profesionalapplication/pdfspaUniversidad Nacional de Ingenieríainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/4.0/Universidad Nacional de IngenieríaRepositorio Institucional - UNIreponame:UNI-Tesisinstname:Universidad Nacional de Ingenieríainstacron:UNISegmentación de mercadoConsumos comercialesOfertas comercialesSegmentación de clientes en base a su comportamiento de consumo a través del modelo de segmentación K- MEANS en una entidad Bancariainfo:eu-repo/semantics/bachelorThesisSUNEDUIngeniero EstadísticoUniversidad Nacional de Ingeniería. Facultad de Ingeniería Económica, Estadística y Ciencias SocialesTítulo ProfesionalIngeniería EstadísticaIngenieríaTEXTsalazar_gj.pdf.txtsalazar_gj.pdf.txtExtracted texttext/plain153408http://cybertesis.uni.edu.pe/bitstream/20.500.14076/3401/3/salazar_gj.pdf.txt581f469024c388bda10cf301488cfd33MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://cybertesis.uni.edu.pe/bitstream/20.500.14076/3401/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52ORIGINALsalazar_gj.pdfsalazar_gj.pdfapplication/pdf2329814http://cybertesis.uni.edu.pe/bitstream/20.500.14076/3401/1/salazar_gj.pdf8d6f44af7ed5e80c391573d3480981caMD5120.500.14076/3401oai:cybertesis.uni.edu.pe:20.500.14076/34012021-05-14 08:57:34.584Repositorio Institucional - UNIrepositorio@uni.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
| score |
13.936249 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).