Forescat modeling of spatio-temporal raster data using principal component analysis and a neural networks - wavelet decomposition model

Descripción del Articulo

Nowadays spatio-temporal forecasting has been drawing more and more attention from academia researchers and industrial practitioners for its great utility to plan and develop contingency measures against future adverse conditions. In this thesis, a methodology to forecast maps in spatio- temporal ra...

Descripción completa

Detalles Bibliográficos
Autor: Amao Suxo, Christian
Formato: tesis de maestría
Fecha de Publicación:2018
Institución:Universidad Nacional de Ingeniería
Repositorio:UNI-Tesis
Lenguaje:inglés
OAI Identifier:oai:cybertesis.uni.edu.pe:20.500.14076/18447
Enlace del recurso:http://hdl.handle.net/20.500.14076/18447
Nivel de acceso:acceso abierto
Materia:Predicciones
Redes neuronales
Datos ráster
https://purl.org/pe-repo/ocde/ford#1.01.02
id UUNI_3c9203d72d25d0e5dec31ab791bb7d53
oai_identifier_str oai:cybertesis.uni.edu.pe:20.500.14076/18447
network_acronym_str UUNI
network_name_str UNI-Tesis
repository_id_str 1534
dc.title.en.fl_str_mv Forescat modeling of spatio-temporal raster data using principal component analysis and a neural networks - wavelet decomposition model
title Forescat modeling of spatio-temporal raster data using principal component analysis and a neural networks - wavelet decomposition model
spellingShingle Forescat modeling of spatio-temporal raster data using principal component analysis and a neural networks - wavelet decomposition model
Amao Suxo, Christian
Predicciones
Redes neuronales
Datos ráster
https://purl.org/pe-repo/ocde/ford#1.01.02
title_short Forescat modeling of spatio-temporal raster data using principal component analysis and a neural networks - wavelet decomposition model
title_full Forescat modeling of spatio-temporal raster data using principal component analysis and a neural networks - wavelet decomposition model
title_fullStr Forescat modeling of spatio-temporal raster data using principal component analysis and a neural networks - wavelet decomposition model
title_full_unstemmed Forescat modeling of spatio-temporal raster data using principal component analysis and a neural networks - wavelet decomposition model
title_sort Forescat modeling of spatio-temporal raster data using principal component analysis and a neural networks - wavelet decomposition model
dc.creator.none.fl_str_mv Amao Suxo, Christian
author Amao Suxo, Christian
author_facet Amao Suxo, Christian
author_role author
dc.contributor.advisor.fl_str_mv Velásquez Castañón, Oswaldo José
dc.contributor.author.fl_str_mv Amao Suxo, Christian
dc.subject.es.fl_str_mv Predicciones
Redes neuronales
Datos ráster
topic Predicciones
Redes neuronales
Datos ráster
https://purl.org/pe-repo/ocde/ford#1.01.02
dc.subject.ocde.es.fl_str_mv https://purl.org/pe-repo/ocde/ford#1.01.02
description Nowadays spatio-temporal forecasting has been drawing more and more attention from academia researchers and industrial practitioners for its great utility to plan and develop contingency measures against future adverse conditions. In this thesis, a methodology to forecast maps in spatio- temporal raster datasets is proposed. Following a summarize-predict-and-rebuild methodology, it 1) first suggests a reduction in the dimensionality of data using a principal component analysis, then 2) individual forecasts on the most significant components or eigenvectors are calculated using a neural networks - wavelet decomposition model. Finally, 3) a recursive algorithm, applied on the spectral inverse reconstruction of the individual forecasts, provides the final forecast maps. The devised methodology led to three models according: the spatial principal component anal¬ysis (SPCA) model, the temporal principal component analysis (TPCA) model and the spatio- temporal principal component analysis (STPCA) model. In order to evaluate their forecasting accuracy, a simulation study was carried out by considering datasets with pure temporal, pure spatial and spatio-temporal variability. The results suggest using a TPCA (or SPCA) model when the temporal (or spatial) variability is predominant. For datasets with similar spatial and temporal variability information, the STPCA model provides the best forecast results. The research culmi- nates with a real-world case study in monthly sea surface temperature anomalies of the Tropical Pacific Ocean.
publishDate 2018
dc.date.accessioned.none.fl_str_mv 2019-09-12T16:19:09Z
dc.date.available.none.fl_str_mv 2019-09-12T16:19:09Z
dc.date.issued.fl_str_mv 2018
dc.type.es.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.14076/18447
url http://hdl.handle.net/20.500.14076/18447
dc.language.iso.en.fl_str_mv eng
language eng
dc.relation.ispartof.fl_str_mv SUNEDU
dc.rights.es.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.es.fl_str_mv application/pdf
dc.publisher.es.fl_str_mv Universidad Nacional de Ingeniería
dc.publisher.country.es.fl_str_mv PE
dc.source.es.fl_str_mv Universidad Nacional de Ingeniería
Repositorio Institucional - UNI
dc.source.none.fl_str_mv reponame:UNI-Tesis
instname:Universidad Nacional de Ingeniería
instacron:UNI
instname_str Universidad Nacional de Ingeniería
instacron_str UNI
institution UNI
reponame_str UNI-Tesis
collection UNI-Tesis
bitstream.url.fl_str_mv http://cybertesis.uni.edu.pe/bitstream/20.500.14076/18447/3/amao_sc.pdf.txt
http://cybertesis.uni.edu.pe/bitstream/20.500.14076/18447/2/license.txt
http://cybertesis.uni.edu.pe/bitstream/20.500.14076/18447/1/amao_sc.pdf
bitstream.checksum.fl_str_mv 79f3bbefd2c7a9c56040a5681c75d263
8a4605be74aa9ea9d79846c1fba20a33
1f0d7466ed65fe34b2778f9dd66a6330
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional - UNI
repository.mail.fl_str_mv repositorio@uni.edu.pe
_version_ 1840085626225950720
spelling Velásquez Castañón, Oswaldo JoséAmao Suxo, ChristianAmao Suxo, Christian2019-09-12T16:19:09Z2019-09-12T16:19:09Z2018http://hdl.handle.net/20.500.14076/18447Nowadays spatio-temporal forecasting has been drawing more and more attention from academia researchers and industrial practitioners for its great utility to plan and develop contingency measures against future adverse conditions. In this thesis, a methodology to forecast maps in spatio- temporal raster datasets is proposed. Following a summarize-predict-and-rebuild methodology, it 1) first suggests a reduction in the dimensionality of data using a principal component analysis, then 2) individual forecasts on the most significant components or eigenvectors are calculated using a neural networks - wavelet decomposition model. Finally, 3) a recursive algorithm, applied on the spectral inverse reconstruction of the individual forecasts, provides the final forecast maps. The devised methodology led to three models according: the spatial principal component anal¬ysis (SPCA) model, the temporal principal component analysis (TPCA) model and the spatio- temporal principal component analysis (STPCA) model. In order to evaluate their forecasting accuracy, a simulation study was carried out by considering datasets with pure temporal, pure spatial and spatio-temporal variability. The results suggest using a TPCA (or SPCA) model when the temporal (or spatial) variability is predominant. For datasets with similar spatial and temporal variability information, the STPCA model provides the best forecast results. The research culmi- nates with a real-world case study in monthly sea surface temperature anomalies of the Tropical Pacific Ocean.En la actualidad, el pronóstico de datos espacio - temporales ha sido de especial interés para investigadores académicos y profesionales de la industria por su gran utilidad para planificar y desarrollar medidas de contingencia contra futuras condiciones adversas. En este trabajo se pro¬pone una metodología para el pronóstico de mapas tipo ráster. Siguiendo una metodología de resumir-predecir-y-reconstruir, el método sugiere reducir la dimensionalidad de los datos usando un análisis de componentes principales para luego realizar pronósticos individuales sobre las com¬ponentes o auto vectores más significativos. Finalmente, un algoritmo recursivo, aplicado sobre la reconstrucción inversa espectral de los pronósticos individuales, brinda el pronóstico final de los mapas. La metodología propuesta da lugar a tres modelos: el modelo espacial de componentes princi¬pales (ECP), el modelo temporal de componentes principales (TCP) y el modelo espacio - temporal de componentes principales (ETCP). Con el fin de evaluar su capacidad de pronóstico, se real¬iza un estudio de simulación considerando datos con una estructura de variabilidad espacial pura, temporal puro y espacio - temporal. Los resultados sugieren usar un modelo TCP (o ECP) cuando la variabilidad temporal (o espacial) es predominante. Para datos con similar información en la variabilidad espacial y temporal, el modelo ETCP brinda los mejores resultados de pronóstico. El trabajo culmina con una aplicación real en datos mensuales de anomalías de temperatura superficial del mar del océano Pacífico Tropical.Submitted by luis oncebay lazo (luis11_182@hotmail.com) on 2019-09-12T16:19:09Z No. of bitstreams: 1 amao_sc.pdf: 7662934 bytes, checksum: 1f0d7466ed65fe34b2778f9dd66a6330 (MD5)Made available in DSpace on 2019-09-12T16:19:09Z (GMT). No. of bitstreams: 1 amao_sc.pdf: 7662934 bytes, checksum: 1f0d7466ed65fe34b2778f9dd66a6330 (MD5) Previous issue date: 2018Tesisapplication/pdfengUniversidad Nacional de IngenieríaPEinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/4.0/Universidad Nacional de IngenieríaRepositorio Institucional - UNIreponame:UNI-Tesisinstname:Universidad Nacional de Ingenieríainstacron:UNIPrediccionesRedes neuronalesDatos rásterhttps://purl.org/pe-repo/ocde/ford#1.01.02Forescat modeling of spatio-temporal raster data using principal component analysis and a neural networks - wavelet decomposition modelinfo:eu-repo/semantics/masterThesisSUNEDUMaestro en Ciencias con Mención en Matemática AplicadaUniversidad Nacional de Ingeniería. Facultad de Ciencias. Unidad de PosgradoMaestríaMaestría en Ciencias con Mención en Matemática AplicadaMaestríahttps://orcid.org/0000-0002-1147-99804069482373990475https://purl.org/pe-repo/renati/type#tesishttps://purl.org/pe-repo/renati/level#maestro541037Ocaña Anaya, Eladio TeófiloOchoa Jiménez, RosendoGasco Campos, Loretta Betzabé RosaOrdoñez Mercado, Alipio FranciscoTEXTamao_sc.pdf.txtamao_sc.pdf.txtExtracted texttext/plain230460http://cybertesis.uni.edu.pe/bitstream/20.500.14076/18447/3/amao_sc.pdf.txt79f3bbefd2c7a9c56040a5681c75d263MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://cybertesis.uni.edu.pe/bitstream/20.500.14076/18447/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52ORIGINALamao_sc.pdfamao_sc.pdfapplication/pdf7662934http://cybertesis.uni.edu.pe/bitstream/20.500.14076/18447/1/amao_sc.pdf1f0d7466ed65fe34b2778f9dd66a6330MD5120.500.14076/18447oai:cybertesis.uni.edu.pe:20.500.14076/184472024-10-24 15:15:13.323Repositorio Institucional - UNIrepositorio@uni.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.982926
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).