Clasificación de foliaciones elípticas inducidas por campos cuadráticos con centro

Descripción del Articulo

Las ecuaciones diferenciales ordinarias surgen juntamente con la aparición del cálculo, en la célebre polémica de Newton y Leibniz, a finales del siglo XVII. Doscientos años después, Van der Pool y Appleton obtuvieron ecuaciones diferenciales relacionadas con los circuitos eléctricos. La teoría cual...

Descripción completa

Detalles Bibliográficos
Autor: Puchuri Medina, Liliana
Formato: tesis de grado
Fecha de Publicación:2015
Institución:Universidad Nacional de Ingeniería
Repositorio:UNI-Tesis
Lenguaje:español
OAI Identifier:oai:cybertesis.uni.edu.pe:20.500.14076/4627
Enlace del recurso:http://hdl.handle.net/20.500.14076/4627
Nivel de acceso:acceso abierto
Materia:Foliaciones elípticas
Funciones holomorfas
id UUNI_222f3c5b30ffb83dfc143815c8dfe657
oai_identifier_str oai:cybertesis.uni.edu.pe:20.500.14076/4627
network_acronym_str UUNI
network_name_str UNI-Tesis
repository_id_str 1534
dc.title.es.fl_str_mv Clasificación de foliaciones elípticas inducidas por campos cuadráticos con centro
title Clasificación de foliaciones elípticas inducidas por campos cuadráticos con centro
spellingShingle Clasificación de foliaciones elípticas inducidas por campos cuadráticos con centro
Puchuri Medina, Liliana
Foliaciones elípticas
Funciones holomorfas
title_short Clasificación de foliaciones elípticas inducidas por campos cuadráticos con centro
title_full Clasificación de foliaciones elípticas inducidas por campos cuadráticos con centro
title_fullStr Clasificación de foliaciones elípticas inducidas por campos cuadráticos con centro
title_full_unstemmed Clasificación de foliaciones elípticas inducidas por campos cuadráticos con centro
title_sort Clasificación de foliaciones elípticas inducidas por campos cuadráticos con centro
dc.creator.none.fl_str_mv Puchuri Medina, Liliana
Puchuri Medina, Liliana
author Puchuri Medina, Liliana
author_facet Puchuri Medina, Liliana
author_role author
dc.contributor.advisor.fl_str_mv Fernández Sánchez, Percy Braulio
dc.contributor.author.fl_str_mv Puchuri Medina, Liliana
dc.subject.es.fl_str_mv Foliaciones elípticas
Funciones holomorfas
topic Foliaciones elípticas
Funciones holomorfas
description Las ecuaciones diferenciales ordinarias surgen juntamente con la aparición del cálculo, en la célebre polémica de Newton y Leibniz, a finales del siglo XVII. Doscientos años después, Van der Pool y Appleton obtuvieron ecuaciones diferenciales relacionadas con los circuitos eléctricos. La teoría cualitativa de las ecuaciones diferenciales nació´ de los trabajos de Poincare´ y Liapunov a finales del siglo XIX y en los inicios del siglo XX. En el problema infinitesimal de Hilbert, se observa que bajo pequeñas perturbaciones de un campo se puede obtener ciclos límites en el campo perturbado. Este problema esta´ relacionado con la existencia de ciclos límites, por ello, es importante saber cuándo un campo posee un centro, el cual es llamado el problema del centro. Este problema fue´ resuelto por Poincare´ para campos polinomiales. Posteriormente Liapunov generalizó´ este resultado para campos vectoriales analíticos. Por el teorema de clasificación de campos vectoriales polinomiales reales con centro, tenemos que todo campo polinomial con una singularidad no degenerada con centro posee una integral primera de cuatro tipos: reversible, Lotka-Volterra, codimensi´on cuatro y hamiltoniano. Debido a que todo campo polinomial real induce un campo polinomial complejo, podemos inducir una foliación compleja en el espacio proyectivo complejo de dimensión dos. Se prueba que tales foliaciones inducidas poseen una integral primera racional, cuyas curvas de nivel son curvas algebraicas complejas. En el presente trabajo, reproducimos los resultados obtenidos por Gautier [1] para el caso Lotka-Volterra, usando la de teoría de foliaciones holomorfas. Además, debido a un error sutil en la prueba original de Gautier, presentamos nuevos ejemplos de foliaciones elípticas para este caso. Por otro lado, probamos que en los casos hamiltoniano y codimensión cuatro, las curvas de nivel siempre son de género uno. En el caso reversible, vía mapeos birracionales, las curvas de nivel son dadas por curvas hiperelípticas. En este caso, es fácil calcular el género de las curvas, puesto que el género es invariante vía mapeos birracionales
publishDate 2015
dc.date.accessioned.none.fl_str_mv 2017-09-08T01:22:02Z
dc.date.available.none.fl_str_mv 2017-09-08T01:22:02Z
dc.date.issued.fl_str_mv 2015
dc.type.es.fl_str_mv info:eu-repo/semantics/bachelorThesis
format bachelorThesis
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.14076/4627
url http://hdl.handle.net/20.500.14076/4627
dc.language.iso.es.fl_str_mv spa
language spa
dc.relation.ispartof.fl_str_mv SUNEDU
dc.rights.es.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.es.fl_str_mv application/pdf
dc.publisher.es.fl_str_mv Universidad Nacional de Ingeniería
dc.source.es.fl_str_mv Universidad Nacional de Ingeniería
Repositorio Institucional - UNI
dc.source.none.fl_str_mv reponame:UNI-Tesis
instname:Universidad Nacional de Ingeniería
instacron:UNI
instname_str Universidad Nacional de Ingeniería
instacron_str UNI
institution UNI
reponame_str UNI-Tesis
collection UNI-Tesis
bitstream.url.fl_str_mv http://cybertesis.uni.edu.pe/bitstream/20.500.14076/4627/3/puchuri_ml.pdf.txt
http://cybertesis.uni.edu.pe/bitstream/20.500.14076/4627/2/license.txt
http://cybertesis.uni.edu.pe/bitstream/20.500.14076/4627/1/puchuri_ml.pdf
bitstream.checksum.fl_str_mv f51c3b41f42699a9e86f082d3b9dd004
8a4605be74aa9ea9d79846c1fba20a33
ebb857bc6f9a6e712ea84902a0669e71
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional - UNI
repository.mail.fl_str_mv repositorio@uni.edu.pe
_version_ 1840085479895072768
spelling Fernández Sánchez, Percy BraulioPuchuri Medina, LilianaPuchuri Medina, LilianaPuchuri Medina, Liliana2017-09-08T01:22:02Z2017-09-08T01:22:02Z2015http://hdl.handle.net/20.500.14076/4627Las ecuaciones diferenciales ordinarias surgen juntamente con la aparición del cálculo, en la célebre polémica de Newton y Leibniz, a finales del siglo XVII. Doscientos años después, Van der Pool y Appleton obtuvieron ecuaciones diferenciales relacionadas con los circuitos eléctricos. La teoría cualitativa de las ecuaciones diferenciales nació´ de los trabajos de Poincare´ y Liapunov a finales del siglo XIX y en los inicios del siglo XX. En el problema infinitesimal de Hilbert, se observa que bajo pequeñas perturbaciones de un campo se puede obtener ciclos límites en el campo perturbado. Este problema esta´ relacionado con la existencia de ciclos límites, por ello, es importante saber cuándo un campo posee un centro, el cual es llamado el problema del centro. Este problema fue´ resuelto por Poincare´ para campos polinomiales. Posteriormente Liapunov generalizó´ este resultado para campos vectoriales analíticos. Por el teorema de clasificación de campos vectoriales polinomiales reales con centro, tenemos que todo campo polinomial con una singularidad no degenerada con centro posee una integral primera de cuatro tipos: reversible, Lotka-Volterra, codimensi´on cuatro y hamiltoniano. Debido a que todo campo polinomial real induce un campo polinomial complejo, podemos inducir una foliación compleja en el espacio proyectivo complejo de dimensión dos. Se prueba que tales foliaciones inducidas poseen una integral primera racional, cuyas curvas de nivel son curvas algebraicas complejas. En el presente trabajo, reproducimos los resultados obtenidos por Gautier [1] para el caso Lotka-Volterra, usando la de teoría de foliaciones holomorfas. Además, debido a un error sutil en la prueba original de Gautier, presentamos nuevos ejemplos de foliaciones elípticas para este caso. Por otro lado, probamos que en los casos hamiltoniano y codimensión cuatro, las curvas de nivel siempre son de género uno. En el caso reversible, vía mapeos birracionales, las curvas de nivel son dadas por curvas hiperelípticas. En este caso, es fácil calcular el género de las curvas, puesto que el género es invariante vía mapeos birracionalesSubmitted by Quispe Rabanal Flavio (flaviofime@hotmail.com) on 2017-09-08T01:22:02Z No. of bitstreams: 1 puchuri_ml.pdf: 1960846 bytes, checksum: ebb857bc6f9a6e712ea84902a0669e71 (MD5)Made available in DSpace on 2017-09-08T01:22:02Z (GMT). No. of bitstreams: 1 puchuri_ml.pdf: 1960846 bytes, checksum: ebb857bc6f9a6e712ea84902a0669e71 (MD5) Previous issue date: 2015Tesisapplication/pdfspaUniversidad Nacional de Ingenieríainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/4.0/Universidad Nacional de IngenieríaRepositorio Institucional - UNIreponame:UNI-Tesisinstname:Universidad Nacional de Ingenieríainstacron:UNIFoliaciones elípticasFunciones holomorfasClasificación de foliaciones elípticas inducidas por campos cuadráticos con centroinfo:eu-repo/semantics/bachelorThesisSUNEDULicenciado en MatemáticaUniversidad Nacional de Ingeniería. Facultad de CienciasTítulo ProfesionalMatemáticaLicenciaturaTEXTpuchuri_ml.pdf.txtpuchuri_ml.pdf.txtExtracted texttext/plain162447http://cybertesis.uni.edu.pe/bitstream/20.500.14076/4627/3/puchuri_ml.pdf.txtf51c3b41f42699a9e86f082d3b9dd004MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://cybertesis.uni.edu.pe/bitstream/20.500.14076/4627/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52ORIGINALpuchuri_ml.pdfpuchuri_ml.pdfapplication/pdf1960846http://cybertesis.uni.edu.pe/bitstream/20.500.14076/4627/1/puchuri_ml.pdfebb857bc6f9a6e712ea84902a0669e71MD5120.500.14076/4627oai:cybertesis.uni.edu.pe:20.500.14076/46272019-08-21 16:34:59.949Repositorio Institucional - UNIrepositorio@uni.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.910499
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).