Clasificación de foliaciones elípticas inducidas por campos cuadráticos con centro
Descripción del Articulo
Las ecuaciones diferenciales ordinarias surgen juntamente con la aparición del cálculo, en la célebre polémica de Newton y Leibniz, a finales del siglo XVII. Doscientos años después, Van der Pool y Appleton obtuvieron ecuaciones diferenciales relacionadas con los circuitos eléctricos. La teoría cual...
| Autor: | |
|---|---|
| Formato: | tesis de grado |
| Fecha de Publicación: | 2015 |
| Institución: | Universidad Nacional de Ingeniería |
| Repositorio: | UNI-Tesis |
| Lenguaje: | español |
| OAI Identifier: | oai:cybertesis.uni.edu.pe:20.500.14076/4627 |
| Enlace del recurso: | http://hdl.handle.net/20.500.14076/4627 |
| Nivel de acceso: | acceso abierto |
| Materia: | Foliaciones elípticas Funciones holomorfas |
| id |
UUNI_222f3c5b30ffb83dfc143815c8dfe657 |
|---|---|
| oai_identifier_str |
oai:cybertesis.uni.edu.pe:20.500.14076/4627 |
| network_acronym_str |
UUNI |
| network_name_str |
UNI-Tesis |
| repository_id_str |
1534 |
| dc.title.es.fl_str_mv |
Clasificación de foliaciones elípticas inducidas por campos cuadráticos con centro |
| title |
Clasificación de foliaciones elípticas inducidas por campos cuadráticos con centro |
| spellingShingle |
Clasificación de foliaciones elípticas inducidas por campos cuadráticos con centro Puchuri Medina, Liliana Foliaciones elípticas Funciones holomorfas |
| title_short |
Clasificación de foliaciones elípticas inducidas por campos cuadráticos con centro |
| title_full |
Clasificación de foliaciones elípticas inducidas por campos cuadráticos con centro |
| title_fullStr |
Clasificación de foliaciones elípticas inducidas por campos cuadráticos con centro |
| title_full_unstemmed |
Clasificación de foliaciones elípticas inducidas por campos cuadráticos con centro |
| title_sort |
Clasificación de foliaciones elípticas inducidas por campos cuadráticos con centro |
| dc.creator.none.fl_str_mv |
Puchuri Medina, Liliana Puchuri Medina, Liliana |
| author |
Puchuri Medina, Liliana |
| author_facet |
Puchuri Medina, Liliana |
| author_role |
author |
| dc.contributor.advisor.fl_str_mv |
Fernández Sánchez, Percy Braulio |
| dc.contributor.author.fl_str_mv |
Puchuri Medina, Liliana |
| dc.subject.es.fl_str_mv |
Foliaciones elípticas Funciones holomorfas |
| topic |
Foliaciones elípticas Funciones holomorfas |
| description |
Las ecuaciones diferenciales ordinarias surgen juntamente con la aparición del cálculo, en la célebre polémica de Newton y Leibniz, a finales del siglo XVII. Doscientos años después, Van der Pool y Appleton obtuvieron ecuaciones diferenciales relacionadas con los circuitos eléctricos. La teoría cualitativa de las ecuaciones diferenciales nació´ de los trabajos de Poincare´ y Liapunov a finales del siglo XIX y en los inicios del siglo XX. En el problema infinitesimal de Hilbert, se observa que bajo pequeñas perturbaciones de un campo se puede obtener ciclos límites en el campo perturbado. Este problema esta´ relacionado con la existencia de ciclos límites, por ello, es importante saber cuándo un campo posee un centro, el cual es llamado el problema del centro. Este problema fue´ resuelto por Poincare´ para campos polinomiales. Posteriormente Liapunov generalizó´ este resultado para campos vectoriales analíticos. Por el teorema de clasificación de campos vectoriales polinomiales reales con centro, tenemos que todo campo polinomial con una singularidad no degenerada con centro posee una integral primera de cuatro tipos: reversible, Lotka-Volterra, codimensi´on cuatro y hamiltoniano. Debido a que todo campo polinomial real induce un campo polinomial complejo, podemos inducir una foliación compleja en el espacio proyectivo complejo de dimensión dos. Se prueba que tales foliaciones inducidas poseen una integral primera racional, cuyas curvas de nivel son curvas algebraicas complejas. En el presente trabajo, reproducimos los resultados obtenidos por Gautier [1] para el caso Lotka-Volterra, usando la de teoría de foliaciones holomorfas. Además, debido a un error sutil en la prueba original de Gautier, presentamos nuevos ejemplos de foliaciones elípticas para este caso. Por otro lado, probamos que en los casos hamiltoniano y codimensión cuatro, las curvas de nivel siempre son de género uno. En el caso reversible, vía mapeos birracionales, las curvas de nivel son dadas por curvas hiperelípticas. En este caso, es fácil calcular el género de las curvas, puesto que el género es invariante vía mapeos birracionales |
| publishDate |
2015 |
| dc.date.accessioned.none.fl_str_mv |
2017-09-08T01:22:02Z |
| dc.date.available.none.fl_str_mv |
2017-09-08T01:22:02Z |
| dc.date.issued.fl_str_mv |
2015 |
| dc.type.es.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
| format |
bachelorThesis |
| dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.14076/4627 |
| url |
http://hdl.handle.net/20.500.14076/4627 |
| dc.language.iso.es.fl_str_mv |
spa |
| language |
spa |
| dc.relation.ispartof.fl_str_mv |
SUNEDU |
| dc.rights.es.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.uri.es.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
| dc.format.es.fl_str_mv |
application/pdf |
| dc.publisher.es.fl_str_mv |
Universidad Nacional de Ingeniería |
| dc.source.es.fl_str_mv |
Universidad Nacional de Ingeniería Repositorio Institucional - UNI |
| dc.source.none.fl_str_mv |
reponame:UNI-Tesis instname:Universidad Nacional de Ingeniería instacron:UNI |
| instname_str |
Universidad Nacional de Ingeniería |
| instacron_str |
UNI |
| institution |
UNI |
| reponame_str |
UNI-Tesis |
| collection |
UNI-Tesis |
| bitstream.url.fl_str_mv |
http://cybertesis.uni.edu.pe/bitstream/20.500.14076/4627/3/puchuri_ml.pdf.txt http://cybertesis.uni.edu.pe/bitstream/20.500.14076/4627/2/license.txt http://cybertesis.uni.edu.pe/bitstream/20.500.14076/4627/1/puchuri_ml.pdf |
| bitstream.checksum.fl_str_mv |
f51c3b41f42699a9e86f082d3b9dd004 8a4605be74aa9ea9d79846c1fba20a33 ebb857bc6f9a6e712ea84902a0669e71 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional - UNI |
| repository.mail.fl_str_mv |
repositorio@uni.edu.pe |
| _version_ |
1840085479895072768 |
| spelling |
Fernández Sánchez, Percy BraulioPuchuri Medina, LilianaPuchuri Medina, LilianaPuchuri Medina, Liliana2017-09-08T01:22:02Z2017-09-08T01:22:02Z2015http://hdl.handle.net/20.500.14076/4627Las ecuaciones diferenciales ordinarias surgen juntamente con la aparición del cálculo, en la célebre polémica de Newton y Leibniz, a finales del siglo XVII. Doscientos años después, Van der Pool y Appleton obtuvieron ecuaciones diferenciales relacionadas con los circuitos eléctricos. La teoría cualitativa de las ecuaciones diferenciales nació´ de los trabajos de Poincare´ y Liapunov a finales del siglo XIX y en los inicios del siglo XX. En el problema infinitesimal de Hilbert, se observa que bajo pequeñas perturbaciones de un campo se puede obtener ciclos límites en el campo perturbado. Este problema esta´ relacionado con la existencia de ciclos límites, por ello, es importante saber cuándo un campo posee un centro, el cual es llamado el problema del centro. Este problema fue´ resuelto por Poincare´ para campos polinomiales. Posteriormente Liapunov generalizó´ este resultado para campos vectoriales analíticos. Por el teorema de clasificación de campos vectoriales polinomiales reales con centro, tenemos que todo campo polinomial con una singularidad no degenerada con centro posee una integral primera de cuatro tipos: reversible, Lotka-Volterra, codimensi´on cuatro y hamiltoniano. Debido a que todo campo polinomial real induce un campo polinomial complejo, podemos inducir una foliación compleja en el espacio proyectivo complejo de dimensión dos. Se prueba que tales foliaciones inducidas poseen una integral primera racional, cuyas curvas de nivel son curvas algebraicas complejas. En el presente trabajo, reproducimos los resultados obtenidos por Gautier [1] para el caso Lotka-Volterra, usando la de teoría de foliaciones holomorfas. Además, debido a un error sutil en la prueba original de Gautier, presentamos nuevos ejemplos de foliaciones elípticas para este caso. Por otro lado, probamos que en los casos hamiltoniano y codimensión cuatro, las curvas de nivel siempre son de género uno. En el caso reversible, vía mapeos birracionales, las curvas de nivel son dadas por curvas hiperelípticas. En este caso, es fácil calcular el género de las curvas, puesto que el género es invariante vía mapeos birracionalesSubmitted by Quispe Rabanal Flavio (flaviofime@hotmail.com) on 2017-09-08T01:22:02Z No. of bitstreams: 1 puchuri_ml.pdf: 1960846 bytes, checksum: ebb857bc6f9a6e712ea84902a0669e71 (MD5)Made available in DSpace on 2017-09-08T01:22:02Z (GMT). No. of bitstreams: 1 puchuri_ml.pdf: 1960846 bytes, checksum: ebb857bc6f9a6e712ea84902a0669e71 (MD5) Previous issue date: 2015Tesisapplication/pdfspaUniversidad Nacional de Ingenieríainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/4.0/Universidad Nacional de IngenieríaRepositorio Institucional - UNIreponame:UNI-Tesisinstname:Universidad Nacional de Ingenieríainstacron:UNIFoliaciones elípticasFunciones holomorfasClasificación de foliaciones elípticas inducidas por campos cuadráticos con centroinfo:eu-repo/semantics/bachelorThesisSUNEDULicenciado en MatemáticaUniversidad Nacional de Ingeniería. Facultad de CienciasTítulo ProfesionalMatemáticaLicenciaturaTEXTpuchuri_ml.pdf.txtpuchuri_ml.pdf.txtExtracted texttext/plain162447http://cybertesis.uni.edu.pe/bitstream/20.500.14076/4627/3/puchuri_ml.pdf.txtf51c3b41f42699a9e86f082d3b9dd004MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://cybertesis.uni.edu.pe/bitstream/20.500.14076/4627/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52ORIGINALpuchuri_ml.pdfpuchuri_ml.pdfapplication/pdf1960846http://cybertesis.uni.edu.pe/bitstream/20.500.14076/4627/1/puchuri_ml.pdfebb857bc6f9a6e712ea84902a0669e71MD5120.500.14076/4627oai:cybertesis.uni.edu.pe:20.500.14076/46272019-08-21 16:34:59.949Repositorio Institucional - UNIrepositorio@uni.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
| score |
13.910499 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).