El problema de equilibrio de Nash generalizado
Descripción del Articulo
Los equilibrios de Nash constituyen un modelo matemático que desde su creación en los años 50 ha encontrado múltiples aplicaciones en varias áreas del conocimiento. La idea intuitiva de equilibrio es la siguiente. Varios agentes o jugadores interactúan entre sí intentando maximizar sus beneficios me...
Autor: | |
---|---|
Formato: | tesis de grado |
Fecha de Publicación: | 2019 |
Institución: | Universidad Nacional de Ingeniería |
Repositorio: | UNI-Tesis |
Lenguaje: | español |
OAI Identifier: | oai:cybertesis.uni.edu.pe:20.500.14076/18953 |
Enlace del recurso: | http://hdl.handle.net/20.500.14076/18953 |
Nivel de acceso: | acceso abierto |
Materia: | Equilibrio de Nash Funciones matemáticas Estrategias matemáticas https://purl.org/pe-repo/ocde/ford#1.01.02 |
id |
UUNI_2067e8a0de5eb222bb8a952859254766 |
---|---|
oai_identifier_str |
oai:cybertesis.uni.edu.pe:20.500.14076/18953 |
network_acronym_str |
UUNI |
network_name_str |
UNI-Tesis |
repository_id_str |
1534 |
dc.title.es.fl_str_mv |
El problema de equilibrio de Nash generalizado |
title |
El problema de equilibrio de Nash generalizado |
spellingShingle |
El problema de equilibrio de Nash generalizado Hilario Poma, César Augusto Equilibrio de Nash Funciones matemáticas Estrategias matemáticas https://purl.org/pe-repo/ocde/ford#1.01.02 |
title_short |
El problema de equilibrio de Nash generalizado |
title_full |
El problema de equilibrio de Nash generalizado |
title_fullStr |
El problema de equilibrio de Nash generalizado |
title_full_unstemmed |
El problema de equilibrio de Nash generalizado |
title_sort |
El problema de equilibrio de Nash generalizado |
dc.creator.none.fl_str_mv |
Hilario Poma, César Augusto |
author |
Hilario Poma, César Augusto |
author_facet |
Hilario Poma, César Augusto |
author_role |
author |
dc.contributor.advisor.fl_str_mv |
Echegaray Castillo, William Carlos |
dc.contributor.author.fl_str_mv |
Hilario Poma, César Augusto |
dc.subject.es.fl_str_mv |
Equilibrio de Nash Funciones matemáticas Estrategias matemáticas |
topic |
Equilibrio de Nash Funciones matemáticas Estrategias matemáticas https://purl.org/pe-repo/ocde/ford#1.01.02 |
dc.subject.ocde.es.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#1.01.02 |
description |
Los equilibrios de Nash constituyen un modelo matemático que desde su creación en los años 50 ha encontrado múltiples aplicaciones en varias áreas del conocimiento. La idea intuitiva de equilibrio es la siguiente. Varios agentes o jugadores interactúan entre sí intentando maximizar sus beneficios mediante el uso de una estrategia. Los beneficios de cada agente dependen de su estrategia propia y de las de sus rivales. En todo momento los jugadores conocen las estrategias de sus contrincantes y, sobre la base de ello, cada agente escoge aquella estrategia que le reporte los mayores beneficios. Se habrá alcanzado un equilibrio cuando cada jugador emplee precisamente aquella estrategia que le proporcione más beneficios. El Problema de Equilibrio de Nash Generalizado (GNEP) formaliza matemáticamente esto que acabamos de describir. A manera de ejemplo, podemos pensar en varios bancos que compiten entre sí en un determinado país. Alcanzar el equilibrio no es fácil. En este sentido, las reformulaciones del GNEP son útiles porque permiten analizar el problema desde nuevas perspectivas, utilizando herramientas de otras áreas de la matemática. Ahora bien, la teoría de las desigualdades variacionales está muy desarrollada, tanto teórica como algorítmicamente (véase [13]). Igualmente, los problemas de optimización (maximización o minimización de funciones) han sido estudiados exhaustivamente, ya desde la época de Newton, y por ello también existe una teoría muy desarrollada al respecto (véase [18]). De manera que las reformulaciones del GNEP como problemas de optimización y como problemas de desigualdad variacional son especial- mente importantes. En esta tesis estudiamos el GNEP y presentamos varias reformulaciones del GNEP como problemas de optimización y como problemas de desigualdad variacional. Las herramientas básicas para obtener las reformulaciones como problemas de optimización serán la función de Nikaido - Isoda y su regularización, mientras que para obtener las reformulaciones como problemas de desigualdad variacional utilizaremos las nociones clásicas de gradientes y subdiferenciales, y la recientemente introducida noción de subniveles ajustados y sus operadores normales (véase [4]). |
publishDate |
2019 |
dc.date.accessioned.none.fl_str_mv |
2020-02-20T14:54:46Z |
dc.date.available.none.fl_str_mv |
2020-02-20T14:54:46Z |
dc.date.issued.fl_str_mv |
2019 |
dc.type.es.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
format |
bachelorThesis |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.14076/18953 |
url |
http://hdl.handle.net/20.500.14076/18953 |
dc.language.iso.es.fl_str_mv |
spa |
language |
spa |
dc.relation.ispartof.fl_str_mv |
SUNEDU |
dc.rights.es.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.es.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.format.es.fl_str_mv |
application/pdf |
dc.publisher.es.fl_str_mv |
Universidad Nacional de Ingeniería |
dc.publisher.country.es.fl_str_mv |
PE |
dc.source.es.fl_str_mv |
Universidad Nacional de Ingeniería Repositorio Institucional - UNI |
dc.source.none.fl_str_mv |
reponame:UNI-Tesis instname:Universidad Nacional de Ingeniería instacron:UNI |
instname_str |
Universidad Nacional de Ingeniería |
instacron_str |
UNI |
institution |
UNI |
reponame_str |
UNI-Tesis |
collection |
UNI-Tesis |
bitstream.url.fl_str_mv |
http://cybertesis.uni.edu.pe/bitstream/20.500.14076/18953/3/hilario_pc.pdf.txt http://cybertesis.uni.edu.pe/bitstream/20.500.14076/18953/2/license.txt http://cybertesis.uni.edu.pe/bitstream/20.500.14076/18953/1/hilario_pc.pdf |
bitstream.checksum.fl_str_mv |
cbcb944ed133efa24378b5d644403da7 8a4605be74aa9ea9d79846c1fba20a33 2da1f25ba140258682c036d771c89290 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional - UNI |
repository.mail.fl_str_mv |
repositorio@uni.edu.pe |
_version_ |
1840085630130847744 |
spelling |
Echegaray Castillo, William CarlosHilario Poma, César AugustoHilario Poma, César Augusto2020-02-20T14:54:46Z2020-02-20T14:54:46Z2019http://hdl.handle.net/20.500.14076/18953Los equilibrios de Nash constituyen un modelo matemático que desde su creación en los años 50 ha encontrado múltiples aplicaciones en varias áreas del conocimiento. La idea intuitiva de equilibrio es la siguiente. Varios agentes o jugadores interactúan entre sí intentando maximizar sus beneficios mediante el uso de una estrategia. Los beneficios de cada agente dependen de su estrategia propia y de las de sus rivales. En todo momento los jugadores conocen las estrategias de sus contrincantes y, sobre la base de ello, cada agente escoge aquella estrategia que le reporte los mayores beneficios. Se habrá alcanzado un equilibrio cuando cada jugador emplee precisamente aquella estrategia que le proporcione más beneficios. El Problema de Equilibrio de Nash Generalizado (GNEP) formaliza matemáticamente esto que acabamos de describir. A manera de ejemplo, podemos pensar en varios bancos que compiten entre sí en un determinado país. Alcanzar el equilibrio no es fácil. En este sentido, las reformulaciones del GNEP son útiles porque permiten analizar el problema desde nuevas perspectivas, utilizando herramientas de otras áreas de la matemática. Ahora bien, la teoría de las desigualdades variacionales está muy desarrollada, tanto teórica como algorítmicamente (véase [13]). Igualmente, los problemas de optimización (maximización o minimización de funciones) han sido estudiados exhaustivamente, ya desde la época de Newton, y por ello también existe una teoría muy desarrollada al respecto (véase [18]). De manera que las reformulaciones del GNEP como problemas de optimización y como problemas de desigualdad variacional son especial- mente importantes. En esta tesis estudiamos el GNEP y presentamos varias reformulaciones del GNEP como problemas de optimización y como problemas de desigualdad variacional. Las herramientas básicas para obtener las reformulaciones como problemas de optimización serán la función de Nikaido - Isoda y su regularización, mientras que para obtener las reformulaciones como problemas de desigualdad variacional utilizaremos las nociones clásicas de gradientes y subdiferenciales, y la recientemente introducida noción de subniveles ajustados y sus operadores normales (véase [4]).Submitted by luis oncebay lazo (luis11_182@hotmail.com) on 2020-02-20T14:54:46Z No. of bitstreams: 1 hilario_pc.pdf: 1105105 bytes, checksum: 2da1f25ba140258682c036d771c89290 (MD5)Made available in DSpace on 2020-02-20T14:54:46Z (GMT). No. of bitstreams: 1 hilario_pc.pdf: 1105105 bytes, checksum: 2da1f25ba140258682c036d771c89290 (MD5) Previous issue date: 2019Tesisapplication/pdfspaUniversidad Nacional de IngenieríaPEinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/4.0/Universidad Nacional de IngenieríaRepositorio Institucional - UNIreponame:UNI-Tesisinstname:Universidad Nacional de Ingenieríainstacron:UNIEquilibrio de NashFunciones matemáticasEstrategias matemáticashttps://purl.org/pe-repo/ocde/ford#1.01.02El problema de equilibrio de Nash generalizadoinfo:eu-repo/semantics/bachelorThesisSUNEDULicenciado en MatemáticaUniversidad Nacional de Ingeniería. Facultad de CienciasTítulo ProfesionalMatemáticaLicenciatura4607445006298758https://purl.org/pe-repo/renati/type#tesishttps://purl.org/pe-repo/renati/level#tituloProfesional541026Canales García, PedroOcaña Anaya, Eladio TeófiloTEXThilario_pc.pdf.txthilario_pc.pdf.txtExtracted texttext/plain338049http://cybertesis.uni.edu.pe/bitstream/20.500.14076/18953/3/hilario_pc.pdf.txtcbcb944ed133efa24378b5d644403da7MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://cybertesis.uni.edu.pe/bitstream/20.500.14076/18953/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52ORIGINALhilario_pc.pdfhilario_pc.pdfapplication/pdf1105105http://cybertesis.uni.edu.pe/bitstream/20.500.14076/18953/1/hilario_pc.pdf2da1f25ba140258682c036d771c89290MD5120.500.14076/18953oai:cybertesis.uni.edu.pe:20.500.14076/189532024-09-23 17:36:58.307Repositorio Institucional - UNIrepositorio@uni.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
score |
13.882472 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).