Construcción de una pro-categoría Abeliana

Descripción del Articulo

En matemática es común organizar los contenidos en estructuras como espacios vectoriales, grupos, anillos, módulos, espacios de medida, variedades diferenciables y muchas otras. El interés principal de esta riqueza topográfica del pensamiento matemático es comprender de manera detallada el comportam...

Descripción completa

Detalles Bibliográficos
Autor: Broncano Torres, Juan Carlos
Formato: tesis de maestría
Fecha de Publicación:2018
Institución:Universidad Nacional de Ingeniería
Repositorio:UNI-Tesis
Lenguaje:español
OAI Identifier:oai:cybertesis.uni.edu.pe:20.500.14076/17633
Enlace del recurso:http://hdl.handle.net/20.500.14076/17633
Nivel de acceso:acceso abierto
Materia:Conjuntos
Categoría abeliana
https://purl.org/pe-repo/ocde/ford#1.01.02
id UUNI_1602c7bed08dbb448a473cf5c9096779
oai_identifier_str oai:cybertesis.uni.edu.pe:20.500.14076/17633
network_acronym_str UUNI
network_name_str UNI-Tesis
repository_id_str 1534
dc.title.es.fl_str_mv Construcción de una pro-categoría Abeliana
title Construcción de una pro-categoría Abeliana
spellingShingle Construcción de una pro-categoría Abeliana
Broncano Torres, Juan Carlos
Conjuntos
Categoría abeliana
https://purl.org/pe-repo/ocde/ford#1.01.02
title_short Construcción de una pro-categoría Abeliana
title_full Construcción de una pro-categoría Abeliana
title_fullStr Construcción de una pro-categoría Abeliana
title_full_unstemmed Construcción de una pro-categoría Abeliana
title_sort Construcción de una pro-categoría Abeliana
dc.creator.none.fl_str_mv Broncano Torres, Juan Carlos
author Broncano Torres, Juan Carlos
author_facet Broncano Torres, Juan Carlos
author_role author
dc.contributor.advisor.fl_str_mv Palacios Baldeón, Joe Albino
dc.contributor.author.fl_str_mv Broncano Torres, Juan Carlos
dc.subject.es.fl_str_mv Conjuntos
Categoría abeliana
topic Conjuntos
Categoría abeliana
https://purl.org/pe-repo/ocde/ford#1.01.02
dc.subject.ocde.es.fl_str_mv https://purl.org/pe-repo/ocde/ford#1.01.02
description En matemática es común organizar los contenidos en estructuras como espacios vectoriales, grupos, anillos, módulos, espacios de medida, variedades diferenciables y muchas otras. El interés principal de esta riqueza topográfica del pensamiento matemático es comprender de manera detallada el comportamiento, las propiedades y los resultados más generales sobre las clases de objetos (entendidos como redes y procesos) pertinentes a una misma estructura. Por ejemplo, si analizamos el objeto matemático grupo, este aparece y captura información dispar (bajo los más diversos teoremas de representación) en los ámbitos más distantes de la matemática: grupos de homología y cohomología, grupos de Galois, acciones de grupos, grupos abelianos, grupos de homotopía, grupos algebraicos, grupo de Grothendieck-Teichmuller, grupos de Lie, grupos cuánticos, grupos de Zilber, gru¬pos hiperbólicos, etc. Aquí no nos enfrentemos, ontológicamente, con una estructura universal de grupo que se someta a propiedades suplementarias en cada supuesto nivel de lectura (lógico, algebraico, topológico, diferencial, etc.), sino, sucede que las diversas redes de información matemática codificadas bajo la estructura de grupo se traslapan (pre - síntesis) y se componen (síntesis) para transmitir coherentemente la información. No existe un objeto matemático sólido que pueda cobrar vida independientemente de los demás, en un supuesto universo primordial, sino existen (pluralmente) redes que evolucionan incesantemente a medida que se conectan con nuevos universos de interpretación matemática. En este sentido la teoría de categoría desarrollada por Samuel Eilenberg y Saunders MacLane en 1945, busca axiomatizar diversas estructuras matemáticas como una sola con ayuda de un lenguaje común y su objetivo es estudiar las propiedades de un objeto insertándolo en una clase (categoría) de objetos similares con la finalidad de construir transmisores de información para las propiedades del objeto, luego compararlos con comportamientos similares en otras categorías, y reutilizar toda la información pen¬dular acumulada y poder capturar con nuevos ojos el objeto inicial. En esa dirección en los años 60 en el Seminaire de Geometrie Algebrique du Bois- Marie desarrollado en París. Alexander Grothendieck y otros matemáticos desarrollan la categoría de pro - objetos de una categoría. En “Theorie des topos et cohomologie etale des schemas (SGA 4)” se reúnen parte de las notas de estos seminarios. En esta tesis, se construye una pro - categoría abeliana denotada por pro(C) adjunta a una categoría abeliana C, cuyos objetos son sistemas inversos indexados por con¬juntos directos y sus morfismos son clases de equivalencia sobre Hom C. Así mismo, se definen algunos morfismos notables, como por ejemplo los monomorfismos y los epimorfismos. Finalmente se hacen algunas construcciones categóricas, como, por ejemplo, el producto, con la finalidad de demostrar el siguiente resultado: Si C es una categoría abeliana, entonces pro(C) es una categoría abeliana. Una de las tantas aplicaciones que se pueden dar a las pro -categorías, está relacionada con el Teorema de Escisión de Cuntz y Quillen, por la enorme simplificación de su demostración; algunos otros usos van, desde la geometría algebraica (ver [3], [4], [16]); la teoría de formas (ver [10], [13], [30]); la topología geométrica [8] hasta las matemáticas aplicadas (ver [10]).
publishDate 2018
dc.date.accessioned.none.fl_str_mv 2019-05-29T21:00:46Z
dc.date.available.none.fl_str_mv 2019-05-29T21:00:46Z
dc.date.issued.fl_str_mv 2018
dc.type.es.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.14076/17633
url http://hdl.handle.net/20.500.14076/17633
dc.language.iso.es.fl_str_mv spa
language spa
dc.relation.ispartof.fl_str_mv SUNEDU
dc.rights.es.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.es.fl_str_mv application/pdf
dc.publisher.es.fl_str_mv Universidad Nacional de Ingeniería
dc.publisher.country.es.fl_str_mv PE
dc.source.es.fl_str_mv Universidad Nacional de Ingeniería
Repositorio Institucional - UNI
dc.source.none.fl_str_mv reponame:UNI-Tesis
instname:Universidad Nacional de Ingeniería
instacron:UNI
instname_str Universidad Nacional de Ingeniería
instacron_str UNI
institution UNI
reponame_str UNI-Tesis
collection UNI-Tesis
bitstream.url.fl_str_mv http://cybertesis.uni.edu.pe/bitstream/20.500.14076/17633/3/brancano_tj.pdf.txt
http://cybertesis.uni.edu.pe/bitstream/20.500.14076/17633/2/license.txt
http://cybertesis.uni.edu.pe/bitstream/20.500.14076/17633/1/brancano_tj.pdf
bitstream.checksum.fl_str_mv 38c65b8e99caf783f11a0412e9bf6a03
8a4605be74aa9ea9d79846c1fba20a33
605709bf0b1979df4f5f52724a4385f5
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional - UNI
repository.mail.fl_str_mv repositorio@uni.edu.pe
_version_ 1840085613436469248
spelling Palacios Baldeón, Joe AlbinoBroncano Torres, Juan CarlosBroncano Torres, Juan Carlos2019-05-29T21:00:46Z2019-05-29T21:00:46Z2018http://hdl.handle.net/20.500.14076/17633En matemática es común organizar los contenidos en estructuras como espacios vectoriales, grupos, anillos, módulos, espacios de medida, variedades diferenciables y muchas otras. El interés principal de esta riqueza topográfica del pensamiento matemático es comprender de manera detallada el comportamiento, las propiedades y los resultados más generales sobre las clases de objetos (entendidos como redes y procesos) pertinentes a una misma estructura. Por ejemplo, si analizamos el objeto matemático grupo, este aparece y captura información dispar (bajo los más diversos teoremas de representación) en los ámbitos más distantes de la matemática: grupos de homología y cohomología, grupos de Galois, acciones de grupos, grupos abelianos, grupos de homotopía, grupos algebraicos, grupo de Grothendieck-Teichmuller, grupos de Lie, grupos cuánticos, grupos de Zilber, gru¬pos hiperbólicos, etc. Aquí no nos enfrentemos, ontológicamente, con una estructura universal de grupo que se someta a propiedades suplementarias en cada supuesto nivel de lectura (lógico, algebraico, topológico, diferencial, etc.), sino, sucede que las diversas redes de información matemática codificadas bajo la estructura de grupo se traslapan (pre - síntesis) y se componen (síntesis) para transmitir coherentemente la información. No existe un objeto matemático sólido que pueda cobrar vida independientemente de los demás, en un supuesto universo primordial, sino existen (pluralmente) redes que evolucionan incesantemente a medida que se conectan con nuevos universos de interpretación matemática. En este sentido la teoría de categoría desarrollada por Samuel Eilenberg y Saunders MacLane en 1945, busca axiomatizar diversas estructuras matemáticas como una sola con ayuda de un lenguaje común y su objetivo es estudiar las propiedades de un objeto insertándolo en una clase (categoría) de objetos similares con la finalidad de construir transmisores de información para las propiedades del objeto, luego compararlos con comportamientos similares en otras categorías, y reutilizar toda la información pen¬dular acumulada y poder capturar con nuevos ojos el objeto inicial. En esa dirección en los años 60 en el Seminaire de Geometrie Algebrique du Bois- Marie desarrollado en París. Alexander Grothendieck y otros matemáticos desarrollan la categoría de pro - objetos de una categoría. En “Theorie des topos et cohomologie etale des schemas (SGA 4)” se reúnen parte de las notas de estos seminarios. En esta tesis, se construye una pro - categoría abeliana denotada por pro(C) adjunta a una categoría abeliana C, cuyos objetos son sistemas inversos indexados por con¬juntos directos y sus morfismos son clases de equivalencia sobre Hom C. Así mismo, se definen algunos morfismos notables, como por ejemplo los monomorfismos y los epimorfismos. Finalmente se hacen algunas construcciones categóricas, como, por ejemplo, el producto, con la finalidad de demostrar el siguiente resultado: Si C es una categoría abeliana, entonces pro(C) es una categoría abeliana. Una de las tantas aplicaciones que se pueden dar a las pro -categorías, está relacionada con el Teorema de Escisión de Cuntz y Quillen, por la enorme simplificación de su demostración; algunos otros usos van, desde la geometría algebraica (ver [3], [4], [16]); la teoría de formas (ver [10], [13], [30]); la topología geométrica [8] hasta las matemáticas aplicadas (ver [10]).Submitted by luis oncebay lazo (luis11_182@hotmail.com) on 2019-05-29T21:00:46Z No. of bitstreams: 1 brancano_tj.pdf: 640874 bytes, checksum: 605709bf0b1979df4f5f52724a4385f5 (MD5)Made available in DSpace on 2019-05-29T21:00:46Z (GMT). No. of bitstreams: 1 brancano_tj.pdf: 640874 bytes, checksum: 605709bf0b1979df4f5f52724a4385f5 (MD5) Previous issue date: 2018Tesisapplication/pdfspaUniversidad Nacional de IngenieríaPEinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/4.0/Universidad Nacional de IngenieríaRepositorio Institucional - UNIreponame:UNI-Tesisinstname:Universidad Nacional de Ingenieríainstacron:UNIConjuntosCategoría abelianahttps://purl.org/pe-repo/ocde/ford#1.01.02Construcción de una pro-categoría Abelianainfo:eu-repo/semantics/masterThesisSUNEDUMaestro en Ciencias con Mención en Matemática AplicadaUniversidad Nacional de Ingeniería. Facultad de Ciencias. Unidad de PosgradoMaestríaMaestría en Ciencias con Mención en Matemática AplicadaMaestríahttps://orcid.org/0000-0003-4239-27464180984915861538https://purl.org/pe-repo/renati/type#tesishttps://purl.org/pe-repo/renati/level#maestro541037Velásquez Castañón, Oswaldo JoséOchoa Jiménez, RosendoValqui Haase, Christian HolgerArce Flores, Jack DenneTEXTbrancano_tj.pdf.txtbrancano_tj.pdf.txtExtracted texttext/plain173607http://cybertesis.uni.edu.pe/bitstream/20.500.14076/17633/3/brancano_tj.pdf.txt38c65b8e99caf783f11a0412e9bf6a03MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://cybertesis.uni.edu.pe/bitstream/20.500.14076/17633/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52ORIGINALbrancano_tj.pdfbrancano_tj.pdfapplication/pdf640874http://cybertesis.uni.edu.pe/bitstream/20.500.14076/17633/1/brancano_tj.pdf605709bf0b1979df4f5f52724a4385f5MD5120.500.14076/17633oai:cybertesis.uni.edu.pe:20.500.14076/176332024-10-21 19:24:49.979Repositorio Institucional - UNIrepositorio@uni.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.982926
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).